(0) Obligation:
Clauses:
list([]) :- !.
list(X) :- ','(tail(X, T), list(T)).
tail([], []).
tail(.(X, Xs), Xs).
Query: list(g)
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph ICLP10.
(2) Obligation:
Clauses:
listA([]).
listA(.(T8, T9)) :- listA(T9).
Query: listA(g)
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
listA_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))
The argument filtering Pi contains the following mapping:
listA_in_g(
x1) =
listA_in_g(
x1)
[] =
[]
listA_out_g(
x1) =
listA_out_g
.(
x1,
x2) =
.(
x1,
x2)
U1_g(
x1,
x2,
x3) =
U1_g(
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))
The argument filtering Pi contains the following mapping:
listA_in_g(
x1) =
listA_in_g(
x1)
[] =
[]
listA_out_g(
x1) =
listA_out_g
.(
x1,
x2) =
.(
x1,
x2)
U1_g(
x1,
x2,
x3) =
U1_g(
x3)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
LISTA_IN_G(.(T8, T9)) → U1_G(T8, T9, listA_in_g(T9))
LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)
The TRS R consists of the following rules:
listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))
The argument filtering Pi contains the following mapping:
listA_in_g(
x1) =
listA_in_g(
x1)
[] =
[]
listA_out_g(
x1) =
listA_out_g
.(
x1,
x2) =
.(
x1,
x2)
U1_g(
x1,
x2,
x3) =
U1_g(
x3)
LISTA_IN_G(
x1) =
LISTA_IN_G(
x1)
U1_G(
x1,
x2,
x3) =
U1_G(
x3)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LISTA_IN_G(.(T8, T9)) → U1_G(T8, T9, listA_in_g(T9))
LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)
The TRS R consists of the following rules:
listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))
The argument filtering Pi contains the following mapping:
listA_in_g(
x1) =
listA_in_g(
x1)
[] =
[]
listA_out_g(
x1) =
listA_out_g
.(
x1,
x2) =
.(
x1,
x2)
U1_g(
x1,
x2,
x3) =
U1_g(
x3)
LISTA_IN_G(
x1) =
LISTA_IN_G(
x1)
U1_G(
x1,
x2,
x3) =
U1_G(
x3)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)
The TRS R consists of the following rules:
listA_in_g([]) → listA_out_g([])
listA_in_g(.(T8, T9)) → U1_g(T8, T9, listA_in_g(T9))
U1_g(T8, T9, listA_out_g(T9)) → listA_out_g(.(T8, T9))
The argument filtering Pi contains the following mapping:
listA_in_g(
x1) =
listA_in_g(
x1)
[] =
[]
listA_out_g(
x1) =
listA_out_g
.(
x1,
x2) =
.(
x1,
x2)
U1_g(
x1,
x2,
x3) =
U1_g(
x3)
LISTA_IN_G(
x1) =
LISTA_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LISTA_IN_G(.(T8, T9)) → LISTA_IN_G(T9)
The graph contains the following edges 1 > 1
(14) YES