(0) Obligation:
Clauses:
less(0, s(X2)).
less(X, Y) :- ','(no(zero(X)), ','(p(X, X1), ','(p(Y, Y1), less(X1, Y1)))).
p(0, 0).
p(s(X), X).
zero(0).
no(X) :- ','(X, ','(!, failure(a))).
no(X3).
failure(b).
Query: less(g,a)
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph ICLP10.
(2) Obligation:
Clauses:
lessA(s(T33)) :- lessA(T33).
lessB(0, s(T4)).
lessB(s(T21), 0) :- lessA(T21).
lessB(s(T21), s(T37)) :- lessB(T21, T37).
Query: lessB(g,a)
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
lessB_in: (b,f)
lessA_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
lessB_in_ga(0, s(T4)) → lessB_out_ga(0, s(T4))
lessB_in_ga(s(T21), 0) → U2_ga(T21, lessA_in_g(T21))
lessA_in_g(s(T33)) → U1_g(T33, lessA_in_g(T33))
U1_g(T33, lessA_out_g(T33)) → lessA_out_g(s(T33))
U2_ga(T21, lessA_out_g(T21)) → lessB_out_ga(s(T21), 0)
lessB_in_ga(s(T21), s(T37)) → U3_ga(T21, T37, lessB_in_ga(T21, T37))
U3_ga(T21, T37, lessB_out_ga(T21, T37)) → lessB_out_ga(s(T21), s(T37))
The argument filtering Pi contains the following mapping:
lessB_in_ga(
x1,
x2) =
lessB_in_ga(
x1)
0 =
0
lessB_out_ga(
x1,
x2) =
lessB_out_ga
s(
x1) =
s(
x1)
U2_ga(
x1,
x2) =
U2_ga(
x2)
lessA_in_g(
x1) =
lessA_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
lessA_out_g(
x1) =
lessA_out_g
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
lessB_in_ga(0, s(T4)) → lessB_out_ga(0, s(T4))
lessB_in_ga(s(T21), 0) → U2_ga(T21, lessA_in_g(T21))
lessA_in_g(s(T33)) → U1_g(T33, lessA_in_g(T33))
U1_g(T33, lessA_out_g(T33)) → lessA_out_g(s(T33))
U2_ga(T21, lessA_out_g(T21)) → lessB_out_ga(s(T21), 0)
lessB_in_ga(s(T21), s(T37)) → U3_ga(T21, T37, lessB_in_ga(T21, T37))
U3_ga(T21, T37, lessB_out_ga(T21, T37)) → lessB_out_ga(s(T21), s(T37))
The argument filtering Pi contains the following mapping:
lessB_in_ga(
x1,
x2) =
lessB_in_ga(
x1)
0 =
0
lessB_out_ga(
x1,
x2) =
lessB_out_ga
s(
x1) =
s(
x1)
U2_ga(
x1,
x2) =
U2_ga(
x2)
lessA_in_g(
x1) =
lessA_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
lessA_out_g(
x1) =
lessA_out_g
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
LESSB_IN_GA(s(T21), 0) → U2_GA(T21, lessA_in_g(T21))
LESSB_IN_GA(s(T21), 0) → LESSA_IN_G(T21)
LESSA_IN_G(s(T33)) → U1_G(T33, lessA_in_g(T33))
LESSA_IN_G(s(T33)) → LESSA_IN_G(T33)
LESSB_IN_GA(s(T21), s(T37)) → U3_GA(T21, T37, lessB_in_ga(T21, T37))
LESSB_IN_GA(s(T21), s(T37)) → LESSB_IN_GA(T21, T37)
The TRS R consists of the following rules:
lessB_in_ga(0, s(T4)) → lessB_out_ga(0, s(T4))
lessB_in_ga(s(T21), 0) → U2_ga(T21, lessA_in_g(T21))
lessA_in_g(s(T33)) → U1_g(T33, lessA_in_g(T33))
U1_g(T33, lessA_out_g(T33)) → lessA_out_g(s(T33))
U2_ga(T21, lessA_out_g(T21)) → lessB_out_ga(s(T21), 0)
lessB_in_ga(s(T21), s(T37)) → U3_ga(T21, T37, lessB_in_ga(T21, T37))
U3_ga(T21, T37, lessB_out_ga(T21, T37)) → lessB_out_ga(s(T21), s(T37))
The argument filtering Pi contains the following mapping:
lessB_in_ga(
x1,
x2) =
lessB_in_ga(
x1)
0 =
0
lessB_out_ga(
x1,
x2) =
lessB_out_ga
s(
x1) =
s(
x1)
U2_ga(
x1,
x2) =
U2_ga(
x2)
lessA_in_g(
x1) =
lessA_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
lessA_out_g(
x1) =
lessA_out_g
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
LESSB_IN_GA(
x1,
x2) =
LESSB_IN_GA(
x1)
U2_GA(
x1,
x2) =
U2_GA(
x2)
LESSA_IN_G(
x1) =
LESSA_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
U3_GA(
x1,
x2,
x3) =
U3_GA(
x3)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESSB_IN_GA(s(T21), 0) → U2_GA(T21, lessA_in_g(T21))
LESSB_IN_GA(s(T21), 0) → LESSA_IN_G(T21)
LESSA_IN_G(s(T33)) → U1_G(T33, lessA_in_g(T33))
LESSA_IN_G(s(T33)) → LESSA_IN_G(T33)
LESSB_IN_GA(s(T21), s(T37)) → U3_GA(T21, T37, lessB_in_ga(T21, T37))
LESSB_IN_GA(s(T21), s(T37)) → LESSB_IN_GA(T21, T37)
The TRS R consists of the following rules:
lessB_in_ga(0, s(T4)) → lessB_out_ga(0, s(T4))
lessB_in_ga(s(T21), 0) → U2_ga(T21, lessA_in_g(T21))
lessA_in_g(s(T33)) → U1_g(T33, lessA_in_g(T33))
U1_g(T33, lessA_out_g(T33)) → lessA_out_g(s(T33))
U2_ga(T21, lessA_out_g(T21)) → lessB_out_ga(s(T21), 0)
lessB_in_ga(s(T21), s(T37)) → U3_ga(T21, T37, lessB_in_ga(T21, T37))
U3_ga(T21, T37, lessB_out_ga(T21, T37)) → lessB_out_ga(s(T21), s(T37))
The argument filtering Pi contains the following mapping:
lessB_in_ga(
x1,
x2) =
lessB_in_ga(
x1)
0 =
0
lessB_out_ga(
x1,
x2) =
lessB_out_ga
s(
x1) =
s(
x1)
U2_ga(
x1,
x2) =
U2_ga(
x2)
lessA_in_g(
x1) =
lessA_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
lessA_out_g(
x1) =
lessA_out_g
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
LESSB_IN_GA(
x1,
x2) =
LESSB_IN_GA(
x1)
U2_GA(
x1,
x2) =
U2_GA(
x2)
LESSA_IN_G(
x1) =
LESSA_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
U3_GA(
x1,
x2,
x3) =
U3_GA(
x3)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESSA_IN_G(s(T33)) → LESSA_IN_G(T33)
The TRS R consists of the following rules:
lessB_in_ga(0, s(T4)) → lessB_out_ga(0, s(T4))
lessB_in_ga(s(T21), 0) → U2_ga(T21, lessA_in_g(T21))
lessA_in_g(s(T33)) → U1_g(T33, lessA_in_g(T33))
U1_g(T33, lessA_out_g(T33)) → lessA_out_g(s(T33))
U2_ga(T21, lessA_out_g(T21)) → lessB_out_ga(s(T21), 0)
lessB_in_ga(s(T21), s(T37)) → U3_ga(T21, T37, lessB_in_ga(T21, T37))
U3_ga(T21, T37, lessB_out_ga(T21, T37)) → lessB_out_ga(s(T21), s(T37))
The argument filtering Pi contains the following mapping:
lessB_in_ga(
x1,
x2) =
lessB_in_ga(
x1)
0 =
0
lessB_out_ga(
x1,
x2) =
lessB_out_ga
s(
x1) =
s(
x1)
U2_ga(
x1,
x2) =
U2_ga(
x2)
lessA_in_g(
x1) =
lessA_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
lessA_out_g(
x1) =
lessA_out_g
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
LESSA_IN_G(
x1) =
LESSA_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESSA_IN_G(s(T33)) → LESSA_IN_G(T33)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LESSA_IN_G(s(T33)) → LESSA_IN_G(T33)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LESSA_IN_G(s(T33)) → LESSA_IN_G(T33)
The graph contains the following edges 1 > 1
(15) YES
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESSB_IN_GA(s(T21), s(T37)) → LESSB_IN_GA(T21, T37)
The TRS R consists of the following rules:
lessB_in_ga(0, s(T4)) → lessB_out_ga(0, s(T4))
lessB_in_ga(s(T21), 0) → U2_ga(T21, lessA_in_g(T21))
lessA_in_g(s(T33)) → U1_g(T33, lessA_in_g(T33))
U1_g(T33, lessA_out_g(T33)) → lessA_out_g(s(T33))
U2_ga(T21, lessA_out_g(T21)) → lessB_out_ga(s(T21), 0)
lessB_in_ga(s(T21), s(T37)) → U3_ga(T21, T37, lessB_in_ga(T21, T37))
U3_ga(T21, T37, lessB_out_ga(T21, T37)) → lessB_out_ga(s(T21), s(T37))
The argument filtering Pi contains the following mapping:
lessB_in_ga(
x1,
x2) =
lessB_in_ga(
x1)
0 =
0
lessB_out_ga(
x1,
x2) =
lessB_out_ga
s(
x1) =
s(
x1)
U2_ga(
x1,
x2) =
U2_ga(
x2)
lessA_in_g(
x1) =
lessA_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
lessA_out_g(
x1) =
lessA_out_g
U3_ga(
x1,
x2,
x3) =
U3_ga(
x3)
LESSB_IN_GA(
x1,
x2) =
LESSB_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(17) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESSB_IN_GA(s(T21), s(T37)) → LESSB_IN_GA(T21, T37)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
LESSB_IN_GA(
x1,
x2) =
LESSB_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LESSB_IN_GA(s(T21)) → LESSB_IN_GA(T21)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LESSB_IN_GA(s(T21)) → LESSB_IN_GA(T21)
The graph contains the following edges 1 > 1
(22) YES