(0) Obligation:

Clauses:

fold(X, [], Z) :- ','(!, eq(X, Z)).
fold(X, Y, Z) :- ','(head(Y, H), ','(tail(Y, T), ','(myop(X, H, V), fold(V, T, Z)))).
myop(a, b, a).
head([], X1).
head(.(H, X2), H).
tail([], []).
tail(.(X3, T), T).
eq(X, X).

Query: fold(g,g,a)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

foldA([], a).
foldA(.(b, T62), T47) :- foldA(T62, T47).
foldB(T11, [], T11).
foldB(a, .(b, T32), T18) :- foldA(T32, T18).

Query: foldB(g,g,a)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
foldB_in: (b,b,f)
foldA_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

foldB_in_gga(T11, [], T11) → foldB_out_gga(T11, [], T11)
foldB_in_gga(a, .(b, T32), T18) → U2_gga(T32, T18, foldA_in_ga(T32, T18))
foldA_in_ga([], a) → foldA_out_ga([], a)
foldA_in_ga(.(b, T62), T47) → U1_ga(T62, T47, foldA_in_ga(T62, T47))
U1_ga(T62, T47, foldA_out_ga(T62, T47)) → foldA_out_ga(.(b, T62), T47)
U2_gga(T32, T18, foldA_out_ga(T32, T18)) → foldB_out_gga(a, .(b, T32), T18)

The argument filtering Pi contains the following mapping:
foldB_in_gga(x1, x2, x3)  =  foldB_in_gga(x1, x2)
[]  =  []
foldB_out_gga(x1, x2, x3)  =  foldB_out_gga(x3)
a  =  a
.(x1, x2)  =  .(x1, x2)
b  =  b
U2_gga(x1, x2, x3)  =  U2_gga(x3)
foldA_in_ga(x1, x2)  =  foldA_in_ga(x1)
foldA_out_ga(x1, x2)  =  foldA_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

foldB_in_gga(T11, [], T11) → foldB_out_gga(T11, [], T11)
foldB_in_gga(a, .(b, T32), T18) → U2_gga(T32, T18, foldA_in_ga(T32, T18))
foldA_in_ga([], a) → foldA_out_ga([], a)
foldA_in_ga(.(b, T62), T47) → U1_ga(T62, T47, foldA_in_ga(T62, T47))
U1_ga(T62, T47, foldA_out_ga(T62, T47)) → foldA_out_ga(.(b, T62), T47)
U2_gga(T32, T18, foldA_out_ga(T32, T18)) → foldB_out_gga(a, .(b, T32), T18)

The argument filtering Pi contains the following mapping:
foldB_in_gga(x1, x2, x3)  =  foldB_in_gga(x1, x2)
[]  =  []
foldB_out_gga(x1, x2, x3)  =  foldB_out_gga(x3)
a  =  a
.(x1, x2)  =  .(x1, x2)
b  =  b
U2_gga(x1, x2, x3)  =  U2_gga(x3)
foldA_in_ga(x1, x2)  =  foldA_in_ga(x1)
foldA_out_ga(x1, x2)  =  foldA_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

FOLDB_IN_GGA(a, .(b, T32), T18) → U2_GGA(T32, T18, foldA_in_ga(T32, T18))
FOLDB_IN_GGA(a, .(b, T32), T18) → FOLDA_IN_GA(T32, T18)
FOLDA_IN_GA(.(b, T62), T47) → U1_GA(T62, T47, foldA_in_ga(T62, T47))
FOLDA_IN_GA(.(b, T62), T47) → FOLDA_IN_GA(T62, T47)

The TRS R consists of the following rules:

foldB_in_gga(T11, [], T11) → foldB_out_gga(T11, [], T11)
foldB_in_gga(a, .(b, T32), T18) → U2_gga(T32, T18, foldA_in_ga(T32, T18))
foldA_in_ga([], a) → foldA_out_ga([], a)
foldA_in_ga(.(b, T62), T47) → U1_ga(T62, T47, foldA_in_ga(T62, T47))
U1_ga(T62, T47, foldA_out_ga(T62, T47)) → foldA_out_ga(.(b, T62), T47)
U2_gga(T32, T18, foldA_out_ga(T32, T18)) → foldB_out_gga(a, .(b, T32), T18)

The argument filtering Pi contains the following mapping:
foldB_in_gga(x1, x2, x3)  =  foldB_in_gga(x1, x2)
[]  =  []
foldB_out_gga(x1, x2, x3)  =  foldB_out_gga(x3)
a  =  a
.(x1, x2)  =  .(x1, x2)
b  =  b
U2_gga(x1, x2, x3)  =  U2_gga(x3)
foldA_in_ga(x1, x2)  =  foldA_in_ga(x1)
foldA_out_ga(x1, x2)  =  foldA_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
FOLDB_IN_GGA(x1, x2, x3)  =  FOLDB_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3)  =  U2_GGA(x3)
FOLDA_IN_GA(x1, x2)  =  FOLDA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FOLDB_IN_GGA(a, .(b, T32), T18) → U2_GGA(T32, T18, foldA_in_ga(T32, T18))
FOLDB_IN_GGA(a, .(b, T32), T18) → FOLDA_IN_GA(T32, T18)
FOLDA_IN_GA(.(b, T62), T47) → U1_GA(T62, T47, foldA_in_ga(T62, T47))
FOLDA_IN_GA(.(b, T62), T47) → FOLDA_IN_GA(T62, T47)

The TRS R consists of the following rules:

foldB_in_gga(T11, [], T11) → foldB_out_gga(T11, [], T11)
foldB_in_gga(a, .(b, T32), T18) → U2_gga(T32, T18, foldA_in_ga(T32, T18))
foldA_in_ga([], a) → foldA_out_ga([], a)
foldA_in_ga(.(b, T62), T47) → U1_ga(T62, T47, foldA_in_ga(T62, T47))
U1_ga(T62, T47, foldA_out_ga(T62, T47)) → foldA_out_ga(.(b, T62), T47)
U2_gga(T32, T18, foldA_out_ga(T32, T18)) → foldB_out_gga(a, .(b, T32), T18)

The argument filtering Pi contains the following mapping:
foldB_in_gga(x1, x2, x3)  =  foldB_in_gga(x1, x2)
[]  =  []
foldB_out_gga(x1, x2, x3)  =  foldB_out_gga(x3)
a  =  a
.(x1, x2)  =  .(x1, x2)
b  =  b
U2_gga(x1, x2, x3)  =  U2_gga(x3)
foldA_in_ga(x1, x2)  =  foldA_in_ga(x1)
foldA_out_ga(x1, x2)  =  foldA_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
FOLDB_IN_GGA(x1, x2, x3)  =  FOLDB_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3)  =  U2_GGA(x3)
FOLDA_IN_GA(x1, x2)  =  FOLDA_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FOLDA_IN_GA(.(b, T62), T47) → FOLDA_IN_GA(T62, T47)

The TRS R consists of the following rules:

foldB_in_gga(T11, [], T11) → foldB_out_gga(T11, [], T11)
foldB_in_gga(a, .(b, T32), T18) → U2_gga(T32, T18, foldA_in_ga(T32, T18))
foldA_in_ga([], a) → foldA_out_ga([], a)
foldA_in_ga(.(b, T62), T47) → U1_ga(T62, T47, foldA_in_ga(T62, T47))
U1_ga(T62, T47, foldA_out_ga(T62, T47)) → foldA_out_ga(.(b, T62), T47)
U2_gga(T32, T18, foldA_out_ga(T32, T18)) → foldB_out_gga(a, .(b, T32), T18)

The argument filtering Pi contains the following mapping:
foldB_in_gga(x1, x2, x3)  =  foldB_in_gga(x1, x2)
[]  =  []
foldB_out_gga(x1, x2, x3)  =  foldB_out_gga(x3)
a  =  a
.(x1, x2)  =  .(x1, x2)
b  =  b
U2_gga(x1, x2, x3)  =  U2_gga(x3)
foldA_in_ga(x1, x2)  =  foldA_in_ga(x1)
foldA_out_ga(x1, x2)  =  foldA_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
FOLDA_IN_GA(x1, x2)  =  FOLDA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FOLDA_IN_GA(.(b, T62), T47) → FOLDA_IN_GA(T62, T47)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
b  =  b
FOLDA_IN_GA(x1, x2)  =  FOLDA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FOLDA_IN_GA(.(b, T62)) → FOLDA_IN_GA(T62)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • FOLDA_IN_GA(.(b, T62)) → FOLDA_IN_GA(T62)
    The graph contains the following edges 1 > 1

(14) YES