(0) Obligation:
Clauses:
even(0) :- !.
even(N) :- ','(p(N, P), odd(P)).
odd(s(0)) :- !.
odd(s(N)) :- even(P).
p(0, 0).
p(s(X), X).
Query: even(g)
(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)
Transformed Prolog program to (Pi-)TRS.
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
evenA_in_g(0) → evenA_out_g(0)
evenA_in_g(s(s(0))) → evenA_out_g(s(s(0)))
evenA_in_g(s(s(T9))) → evenA_out_g(s(s(T9)))
Pi is empty.
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:
evenA_in_g(0) → evenA_out_g(0)
evenA_in_g(s(s(0))) → evenA_out_g(s(s(0)))
evenA_in_g(s(s(T9))) → evenA_out_g(s(s(T9)))
Pi is empty.
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:
evenA_in_g(0) → evenA_out_g(0)
evenA_in_g(s(s(0))) → evenA_out_g(s(s(0)))
evenA_in_g(s(s(T9))) → evenA_out_g(s(s(T9)))
Pi is empty.
We have to consider all (P,R,Pi)-chains
(5) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,R,Pi) chain.
(6) YES