(0) Obligation:

Clauses:

even(0) :- !.
even(N) :- ','(p(N, P), odd(P)).
odd(s(0)) :- !.
odd(s(N)) :- even(P).
p(0, 0).
p(s(X), X).

Query: even(g)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

evenA_in_g(0) → evenA_out_g(0)
evenA_in_g(s(s(0))) → evenA_out_g(s(s(0)))
evenA_in_g(s(s(T9))) → evenA_out_g(s(s(T9)))

Pi is empty.

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:

evenA_in_g(0) → evenA_out_g(0)
evenA_in_g(s(s(0))) → evenA_out_g(s(s(0)))
evenA_in_g(s(s(T9))) → evenA_out_g(s(s(T9)))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
P is empty.
The TRS R consists of the following rules:

evenA_in_g(0) → evenA_out_g(0)
evenA_in_g(s(s(0))) → evenA_out_g(s(s(0)))
evenA_in_g(s(s(T9))) → evenA_out_g(s(s(T9)))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(5) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,R,Pi) chain.

(6) YES