(0) Obligation:

Clauses:

duplicate([], L) :- ','(!, eq(L, [])).
duplicate(X, .(H, .(H, Z))) :- ','(head(X, H), ','(tail(X, T), duplicate(T, Z))).
head([], X1).
head(.(H, X2), H).
tail([], []).
tail(.(X3, T), T).
eq(X, X).

Query: duplicate(g,a)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

duplicateA_in_ga([], []) → duplicateA_out_ga([], [])
duplicateA_in_ga(.(T31, T32), .(T31, .(T31, T24))) → U1_ga(T31, T32, T24, duplicateA_in_ga(T32, T24))
U1_ga(T31, T32, T24, duplicateA_out_ga(T32, T24)) → duplicateA_out_ga(.(T31, T32), .(T31, .(T31, T24)))

The argument filtering Pi contains the following mapping:
duplicateA_in_ga(x1, x2)  =  duplicateA_in_ga(x1)
[]  =  []
duplicateA_out_ga(x1, x2)  =  duplicateA_out_ga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DUPLICATEA_IN_GA(.(T31, T32), .(T31, .(T31, T24))) → U1_GA(T31, T32, T24, duplicateA_in_ga(T32, T24))
DUPLICATEA_IN_GA(.(T31, T32), .(T31, .(T31, T24))) → DUPLICATEA_IN_GA(T32, T24)

The TRS R consists of the following rules:

duplicateA_in_ga([], []) → duplicateA_out_ga([], [])
duplicateA_in_ga(.(T31, T32), .(T31, .(T31, T24))) → U1_ga(T31, T32, T24, duplicateA_in_ga(T32, T24))
U1_ga(T31, T32, T24, duplicateA_out_ga(T32, T24)) → duplicateA_out_ga(.(T31, T32), .(T31, .(T31, T24)))

The argument filtering Pi contains the following mapping:
duplicateA_in_ga(x1, x2)  =  duplicateA_in_ga(x1)
[]  =  []
duplicateA_out_ga(x1, x2)  =  duplicateA_out_ga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)
DUPLICATEA_IN_GA(x1, x2)  =  DUPLICATEA_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATEA_IN_GA(.(T31, T32), .(T31, .(T31, T24))) → U1_GA(T31, T32, T24, duplicateA_in_ga(T32, T24))
DUPLICATEA_IN_GA(.(T31, T32), .(T31, .(T31, T24))) → DUPLICATEA_IN_GA(T32, T24)

The TRS R consists of the following rules:

duplicateA_in_ga([], []) → duplicateA_out_ga([], [])
duplicateA_in_ga(.(T31, T32), .(T31, .(T31, T24))) → U1_ga(T31, T32, T24, duplicateA_in_ga(T32, T24))
U1_ga(T31, T32, T24, duplicateA_out_ga(T32, T24)) → duplicateA_out_ga(.(T31, T32), .(T31, .(T31, T24)))

The argument filtering Pi contains the following mapping:
duplicateA_in_ga(x1, x2)  =  duplicateA_in_ga(x1)
[]  =  []
duplicateA_out_ga(x1, x2)  =  duplicateA_out_ga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)
DUPLICATEA_IN_GA(x1, x2)  =  DUPLICATEA_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATEA_IN_GA(.(T31, T32), .(T31, .(T31, T24))) → DUPLICATEA_IN_GA(T32, T24)

The TRS R consists of the following rules:

duplicateA_in_ga([], []) → duplicateA_out_ga([], [])
duplicateA_in_ga(.(T31, T32), .(T31, .(T31, T24))) → U1_ga(T31, T32, T24, duplicateA_in_ga(T32, T24))
U1_ga(T31, T32, T24, duplicateA_out_ga(T32, T24)) → duplicateA_out_ga(.(T31, T32), .(T31, .(T31, T24)))

The argument filtering Pi contains the following mapping:
duplicateA_in_ga(x1, x2)  =  duplicateA_in_ga(x1)
[]  =  []
duplicateA_out_ga(x1, x2)  =  duplicateA_out_ga(x1, x2)
.(x1, x2)  =  .(x1, x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x2, x4)
DUPLICATEA_IN_GA(x1, x2)  =  DUPLICATEA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(7) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATEA_IN_GA(.(T31, T32), .(T31, .(T31, T24))) → DUPLICATEA_IN_GA(T32, T24)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
DUPLICATEA_IN_GA(x1, x2)  =  DUPLICATEA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DUPLICATEA_IN_GA(.(T31, T32)) → DUPLICATEA_IN_GA(T32)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DUPLICATEA_IN_GA(.(T31, T32)) → DUPLICATEA_IN_GA(T32)
    The graph contains the following edges 1 > 1

(12) YES