(0) Obligation:

Clauses:

div(0, Y, 0) :- no(zero(Y)).
div(X, Y, s(Z)) :- ','(no(zero(X)), ','(no(zero(Y)), ','(minus(X, Y, U), div(U, Y, Z)))).
minus(0, Y, 0).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
zero(0).
no(X) :- ','(X, ','(!, failure(a))).
no(X1).
failure(b).

Query: div(g,g,a)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

divA_in_gga(0, T17, 0) → divA_out_gga(0, T17, 0)
divA_in_gga(T47, T64, s(T35)) → U1_gga(T47, T64, T35, pB_in_ggaa(T47, T64, X54, T35))
pB_in_ggaa(T47, T64, T71, T35) → U4_ggaa(T47, T64, T71, T35, minusD_in_gga(T47, T64, T71))
minusD_in_gga(s(T84), s(T85), X118) → U3_gga(T84, T85, X118, minusC_in_gga(T84, T85, X118))
minusC_in_gga(0, T92, 0) → minusC_out_gga(0, T92, 0)
minusC_in_gga(T97, 0, T97) → minusC_out_gga(T97, 0, T97)
minusC_in_gga(s(T102), s(T103), X142) → U2_gga(T102, T103, X142, minusC_in_gga(T102, T103, X142))
U2_gga(T102, T103, X142, minusC_out_gga(T102, T103, X142)) → minusC_out_gga(s(T102), s(T103), X142)
U3_gga(T84, T85, X118, minusC_out_gga(T84, T85, X118)) → minusD_out_gga(s(T84), s(T85), X118)
U4_ggaa(T47, T64, T71, T35, minusD_out_gga(T47, T64, T71)) → U5_ggaa(T47, T64, T71, T35, divA_in_gga(T71, T64, T35))
U5_ggaa(T47, T64, T71, T35, divA_out_gga(T71, T64, T35)) → pB_out_ggaa(T47, T64, T71, T35)
U1_gga(T47, T64, T35, pB_out_ggaa(T47, T64, X54, T35)) → divA_out_gga(T47, T64, s(T35))

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x1, x2, x5)
minusD_in_gga(x1, x2, x3)  =  minusD_in_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusD_out_gga(x1, x2, x3)  =  minusD_out_gga(x1, x2, x3)
U5_ggaa(x1, x2, x3, x4, x5)  =  U5_ggaa(x1, x2, x3, x5)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(T47, T64, s(T35)) → U1_GGA(T47, T64, T35, pB_in_ggaa(T47, T64, X54, T35))
DIVA_IN_GGA(T47, T64, s(T35)) → PB_IN_GGAA(T47, T64, X54, T35)
PB_IN_GGAA(T47, T64, T71, T35) → U4_GGAA(T47, T64, T71, T35, minusD_in_gga(T47, T64, T71))
PB_IN_GGAA(T47, T64, T71, T35) → MINUSD_IN_GGA(T47, T64, T71)
MINUSD_IN_GGA(s(T84), s(T85), X118) → U3_GGA(T84, T85, X118, minusC_in_gga(T84, T85, X118))
MINUSD_IN_GGA(s(T84), s(T85), X118) → MINUSC_IN_GGA(T84, T85, X118)
MINUSC_IN_GGA(s(T102), s(T103), X142) → U2_GGA(T102, T103, X142, minusC_in_gga(T102, T103, X142))
MINUSC_IN_GGA(s(T102), s(T103), X142) → MINUSC_IN_GGA(T102, T103, X142)
U4_GGAA(T47, T64, T71, T35, minusD_out_gga(T47, T64, T71)) → U5_GGAA(T47, T64, T71, T35, divA_in_gga(T71, T64, T35))
U4_GGAA(T47, T64, T71, T35, minusD_out_gga(T47, T64, T71)) → DIVA_IN_GGA(T71, T64, T35)

The TRS R consists of the following rules:

divA_in_gga(0, T17, 0) → divA_out_gga(0, T17, 0)
divA_in_gga(T47, T64, s(T35)) → U1_gga(T47, T64, T35, pB_in_ggaa(T47, T64, X54, T35))
pB_in_ggaa(T47, T64, T71, T35) → U4_ggaa(T47, T64, T71, T35, minusD_in_gga(T47, T64, T71))
minusD_in_gga(s(T84), s(T85), X118) → U3_gga(T84, T85, X118, minusC_in_gga(T84, T85, X118))
minusC_in_gga(0, T92, 0) → minusC_out_gga(0, T92, 0)
minusC_in_gga(T97, 0, T97) → minusC_out_gga(T97, 0, T97)
minusC_in_gga(s(T102), s(T103), X142) → U2_gga(T102, T103, X142, minusC_in_gga(T102, T103, X142))
U2_gga(T102, T103, X142, minusC_out_gga(T102, T103, X142)) → minusC_out_gga(s(T102), s(T103), X142)
U3_gga(T84, T85, X118, minusC_out_gga(T84, T85, X118)) → minusD_out_gga(s(T84), s(T85), X118)
U4_ggaa(T47, T64, T71, T35, minusD_out_gga(T47, T64, T71)) → U5_ggaa(T47, T64, T71, T35, divA_in_gga(T71, T64, T35))
U5_ggaa(T47, T64, T71, T35, divA_out_gga(T71, T64, T35)) → pB_out_ggaa(T47, T64, T71, T35)
U1_gga(T47, T64, T35, pB_out_ggaa(T47, T64, X54, T35)) → divA_out_gga(T47, T64, s(T35))

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x1, x2, x5)
minusD_in_gga(x1, x2, x3)  =  minusD_in_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusD_out_gga(x1, x2, x3)  =  minusD_out_gga(x1, x2, x3)
U5_ggaa(x1, x2, x3, x4, x5)  =  U5_ggaa(x1, x2, x3, x5)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)
DIVA_IN_GGA(x1, x2, x3)  =  DIVA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
PB_IN_GGAA(x1, x2, x3, x4)  =  PB_IN_GGAA(x1, x2)
U4_GGAA(x1, x2, x3, x4, x5)  =  U4_GGAA(x1, x2, x5)
MINUSD_IN_GGA(x1, x2, x3)  =  MINUSD_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
MINUSC_IN_GGA(x1, x2, x3)  =  MINUSC_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
U5_GGAA(x1, x2, x3, x4, x5)  =  U5_GGAA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(T47, T64, s(T35)) → U1_GGA(T47, T64, T35, pB_in_ggaa(T47, T64, X54, T35))
DIVA_IN_GGA(T47, T64, s(T35)) → PB_IN_GGAA(T47, T64, X54, T35)
PB_IN_GGAA(T47, T64, T71, T35) → U4_GGAA(T47, T64, T71, T35, minusD_in_gga(T47, T64, T71))
PB_IN_GGAA(T47, T64, T71, T35) → MINUSD_IN_GGA(T47, T64, T71)
MINUSD_IN_GGA(s(T84), s(T85), X118) → U3_GGA(T84, T85, X118, minusC_in_gga(T84, T85, X118))
MINUSD_IN_GGA(s(T84), s(T85), X118) → MINUSC_IN_GGA(T84, T85, X118)
MINUSC_IN_GGA(s(T102), s(T103), X142) → U2_GGA(T102, T103, X142, minusC_in_gga(T102, T103, X142))
MINUSC_IN_GGA(s(T102), s(T103), X142) → MINUSC_IN_GGA(T102, T103, X142)
U4_GGAA(T47, T64, T71, T35, minusD_out_gga(T47, T64, T71)) → U5_GGAA(T47, T64, T71, T35, divA_in_gga(T71, T64, T35))
U4_GGAA(T47, T64, T71, T35, minusD_out_gga(T47, T64, T71)) → DIVA_IN_GGA(T71, T64, T35)

The TRS R consists of the following rules:

divA_in_gga(0, T17, 0) → divA_out_gga(0, T17, 0)
divA_in_gga(T47, T64, s(T35)) → U1_gga(T47, T64, T35, pB_in_ggaa(T47, T64, X54, T35))
pB_in_ggaa(T47, T64, T71, T35) → U4_ggaa(T47, T64, T71, T35, minusD_in_gga(T47, T64, T71))
minusD_in_gga(s(T84), s(T85), X118) → U3_gga(T84, T85, X118, minusC_in_gga(T84, T85, X118))
minusC_in_gga(0, T92, 0) → minusC_out_gga(0, T92, 0)
minusC_in_gga(T97, 0, T97) → minusC_out_gga(T97, 0, T97)
minusC_in_gga(s(T102), s(T103), X142) → U2_gga(T102, T103, X142, minusC_in_gga(T102, T103, X142))
U2_gga(T102, T103, X142, minusC_out_gga(T102, T103, X142)) → minusC_out_gga(s(T102), s(T103), X142)
U3_gga(T84, T85, X118, minusC_out_gga(T84, T85, X118)) → minusD_out_gga(s(T84), s(T85), X118)
U4_ggaa(T47, T64, T71, T35, minusD_out_gga(T47, T64, T71)) → U5_ggaa(T47, T64, T71, T35, divA_in_gga(T71, T64, T35))
U5_ggaa(T47, T64, T71, T35, divA_out_gga(T71, T64, T35)) → pB_out_ggaa(T47, T64, T71, T35)
U1_gga(T47, T64, T35, pB_out_ggaa(T47, T64, X54, T35)) → divA_out_gga(T47, T64, s(T35))

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x1, x2, x5)
minusD_in_gga(x1, x2, x3)  =  minusD_in_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusD_out_gga(x1, x2, x3)  =  minusD_out_gga(x1, x2, x3)
U5_ggaa(x1, x2, x3, x4, x5)  =  U5_ggaa(x1, x2, x3, x5)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)
DIVA_IN_GGA(x1, x2, x3)  =  DIVA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
PB_IN_GGAA(x1, x2, x3, x4)  =  PB_IN_GGAA(x1, x2)
U4_GGAA(x1, x2, x3, x4, x5)  =  U4_GGAA(x1, x2, x5)
MINUSD_IN_GGA(x1, x2, x3)  =  MINUSD_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
MINUSC_IN_GGA(x1, x2, x3)  =  MINUSC_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
U5_GGAA(x1, x2, x3, x4, x5)  =  U5_GGAA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSC_IN_GGA(s(T102), s(T103), X142) → MINUSC_IN_GGA(T102, T103, X142)

The TRS R consists of the following rules:

divA_in_gga(0, T17, 0) → divA_out_gga(0, T17, 0)
divA_in_gga(T47, T64, s(T35)) → U1_gga(T47, T64, T35, pB_in_ggaa(T47, T64, X54, T35))
pB_in_ggaa(T47, T64, T71, T35) → U4_ggaa(T47, T64, T71, T35, minusD_in_gga(T47, T64, T71))
minusD_in_gga(s(T84), s(T85), X118) → U3_gga(T84, T85, X118, minusC_in_gga(T84, T85, X118))
minusC_in_gga(0, T92, 0) → minusC_out_gga(0, T92, 0)
minusC_in_gga(T97, 0, T97) → minusC_out_gga(T97, 0, T97)
minusC_in_gga(s(T102), s(T103), X142) → U2_gga(T102, T103, X142, minusC_in_gga(T102, T103, X142))
U2_gga(T102, T103, X142, minusC_out_gga(T102, T103, X142)) → minusC_out_gga(s(T102), s(T103), X142)
U3_gga(T84, T85, X118, minusC_out_gga(T84, T85, X118)) → minusD_out_gga(s(T84), s(T85), X118)
U4_ggaa(T47, T64, T71, T35, minusD_out_gga(T47, T64, T71)) → U5_ggaa(T47, T64, T71, T35, divA_in_gga(T71, T64, T35))
U5_ggaa(T47, T64, T71, T35, divA_out_gga(T71, T64, T35)) → pB_out_ggaa(T47, T64, T71, T35)
U1_gga(T47, T64, T35, pB_out_ggaa(T47, T64, X54, T35)) → divA_out_gga(T47, T64, s(T35))

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x1, x2, x5)
minusD_in_gga(x1, x2, x3)  =  minusD_in_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusD_out_gga(x1, x2, x3)  =  minusD_out_gga(x1, x2, x3)
U5_ggaa(x1, x2, x3, x4, x5)  =  U5_ggaa(x1, x2, x3, x5)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)
MINUSC_IN_GGA(x1, x2, x3)  =  MINUSC_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSC_IN_GGA(s(T102), s(T103), X142) → MINUSC_IN_GGA(T102, T103, X142)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MINUSC_IN_GGA(x1, x2, x3)  =  MINUSC_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUSC_IN_GGA(s(T102), s(T103)) → MINUSC_IN_GGA(T102, T103)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUSC_IN_GGA(s(T102), s(T103)) → MINUSC_IN_GGA(T102, T103)
    The graph contains the following edges 1 > 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(T47, T64, s(T35)) → PB_IN_GGAA(T47, T64, X54, T35)
PB_IN_GGAA(T47, T64, T71, T35) → U4_GGAA(T47, T64, T71, T35, minusD_in_gga(T47, T64, T71))
U4_GGAA(T47, T64, T71, T35, minusD_out_gga(T47, T64, T71)) → DIVA_IN_GGA(T71, T64, T35)

The TRS R consists of the following rules:

divA_in_gga(0, T17, 0) → divA_out_gga(0, T17, 0)
divA_in_gga(T47, T64, s(T35)) → U1_gga(T47, T64, T35, pB_in_ggaa(T47, T64, X54, T35))
pB_in_ggaa(T47, T64, T71, T35) → U4_ggaa(T47, T64, T71, T35, minusD_in_gga(T47, T64, T71))
minusD_in_gga(s(T84), s(T85), X118) → U3_gga(T84, T85, X118, minusC_in_gga(T84, T85, X118))
minusC_in_gga(0, T92, 0) → minusC_out_gga(0, T92, 0)
minusC_in_gga(T97, 0, T97) → minusC_out_gga(T97, 0, T97)
minusC_in_gga(s(T102), s(T103), X142) → U2_gga(T102, T103, X142, minusC_in_gga(T102, T103, X142))
U2_gga(T102, T103, X142, minusC_out_gga(T102, T103, X142)) → minusC_out_gga(s(T102), s(T103), X142)
U3_gga(T84, T85, X118, minusC_out_gga(T84, T85, X118)) → minusD_out_gga(s(T84), s(T85), X118)
U4_ggaa(T47, T64, T71, T35, minusD_out_gga(T47, T64, T71)) → U5_ggaa(T47, T64, T71, T35, divA_in_gga(T71, T64, T35))
U5_ggaa(T47, T64, T71, T35, divA_out_gga(T71, T64, T35)) → pB_out_ggaa(T47, T64, T71, T35)
U1_gga(T47, T64, T35, pB_out_ggaa(T47, T64, X54, T35)) → divA_out_gga(T47, T64, s(T35))

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x1, x2, x5)
minusD_in_gga(x1, x2, x3)  =  minusD_in_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusD_out_gga(x1, x2, x3)  =  minusD_out_gga(x1, x2, x3)
U5_ggaa(x1, x2, x3, x4, x5)  =  U5_ggaa(x1, x2, x3, x5)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)
DIVA_IN_GGA(x1, x2, x3)  =  DIVA_IN_GGA(x1, x2)
PB_IN_GGAA(x1, x2, x3, x4)  =  PB_IN_GGAA(x1, x2)
U4_GGAA(x1, x2, x3, x4, x5)  =  U4_GGAA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(T47, T64, s(T35)) → PB_IN_GGAA(T47, T64, X54, T35)
PB_IN_GGAA(T47, T64, T71, T35) → U4_GGAA(T47, T64, T71, T35, minusD_in_gga(T47, T64, T71))
U4_GGAA(T47, T64, T71, T35, minusD_out_gga(T47, T64, T71)) → DIVA_IN_GGA(T71, T64, T35)

The TRS R consists of the following rules:

minusD_in_gga(s(T84), s(T85), X118) → U3_gga(T84, T85, X118, minusC_in_gga(T84, T85, X118))
U3_gga(T84, T85, X118, minusC_out_gga(T84, T85, X118)) → minusD_out_gga(s(T84), s(T85), X118)
minusC_in_gga(0, T92, 0) → minusC_out_gga(0, T92, 0)
minusC_in_gga(T97, 0, T97) → minusC_out_gga(T97, 0, T97)
minusC_in_gga(s(T102), s(T103), X142) → U2_gga(T102, T103, X142, minusC_in_gga(T102, T103, X142))
U2_gga(T102, T103, X142, minusC_out_gga(T102, T103, X142)) → minusC_out_gga(s(T102), s(T103), X142)

The argument filtering Pi contains the following mapping:
0  =  0
minusD_in_gga(x1, x2, x3)  =  minusD_in_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusD_out_gga(x1, x2, x3)  =  minusD_out_gga(x1, x2, x3)
DIVA_IN_GGA(x1, x2, x3)  =  DIVA_IN_GGA(x1, x2)
PB_IN_GGAA(x1, x2, x3, x4)  =  PB_IN_GGAA(x1, x2)
U4_GGAA(x1, x2, x3, x4, x5)  =  U4_GGAA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(T47, T64) → PB_IN_GGAA(T47, T64)
PB_IN_GGAA(T47, T64) → U4_GGAA(T47, T64, minusD_in_gga(T47, T64))
U4_GGAA(T47, T64, minusD_out_gga(T47, T64, T71)) → DIVA_IN_GGA(T71, T64)

The TRS R consists of the following rules:

minusD_in_gga(s(T84), s(T85)) → U3_gga(T84, T85, minusC_in_gga(T84, T85))
U3_gga(T84, T85, minusC_out_gga(T84, T85, X118)) → minusD_out_gga(s(T84), s(T85), X118)
minusC_in_gga(0, T92) → minusC_out_gga(0, T92, 0)
minusC_in_gga(T97, 0) → minusC_out_gga(T97, 0, T97)
minusC_in_gga(s(T102), s(T103)) → U2_gga(T102, T103, minusC_in_gga(T102, T103))
U2_gga(T102, T103, minusC_out_gga(T102, T103, X142)) → minusC_out_gga(s(T102), s(T103), X142)

The set Q consists of the following terms:

minusD_in_gga(x0, x1)
U3_gga(x0, x1, x2)
minusC_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


DIVA_IN_GGA(T47, T64) → PB_IN_GGAA(T47, T64)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIVA_IN_GGA(x1, x2)) = 1 + x1   
POL(PB_IN_GGAA(x1, x2)) = x1   
POL(U2_gga(x1, x2, x3)) = x3   
POL(U3_gga(x1, x2, x3)) = 1 + x3   
POL(U4_GGAA(x1, x2, x3)) = x3   
POL(minusC_in_gga(x1, x2)) = x1   
POL(minusC_out_gga(x1, x2, x3)) = x3   
POL(minusD_in_gga(x1, x2)) = x1   
POL(minusD_out_gga(x1, x2, x3)) = 1 + x3   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

minusD_in_gga(s(T84), s(T85)) → U3_gga(T84, T85, minusC_in_gga(T84, T85))
minusC_in_gga(0, T92) → minusC_out_gga(0, T92, 0)
minusC_in_gga(T97, 0) → minusC_out_gga(T97, 0, T97)
minusC_in_gga(s(T102), s(T103)) → U2_gga(T102, T103, minusC_in_gga(T102, T103))
U3_gga(T84, T85, minusC_out_gga(T84, T85, X118)) → minusD_out_gga(s(T84), s(T85), X118)
U2_gga(T102, T103, minusC_out_gga(T102, T103, X142)) → minusC_out_gga(s(T102), s(T103), X142)

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PB_IN_GGAA(T47, T64) → U4_GGAA(T47, T64, minusD_in_gga(T47, T64))
U4_GGAA(T47, T64, minusD_out_gga(T47, T64, T71)) → DIVA_IN_GGA(T71, T64)

The TRS R consists of the following rules:

minusD_in_gga(s(T84), s(T85)) → U3_gga(T84, T85, minusC_in_gga(T84, T85))
U3_gga(T84, T85, minusC_out_gga(T84, T85, X118)) → minusD_out_gga(s(T84), s(T85), X118)
minusC_in_gga(0, T92) → minusC_out_gga(0, T92, 0)
minusC_in_gga(T97, 0) → minusC_out_gga(T97, 0, T97)
minusC_in_gga(s(T102), s(T103)) → U2_gga(T102, T103, minusC_in_gga(T102, T103))
U2_gga(T102, T103, minusC_out_gga(T102, T103, X142)) → minusC_out_gga(s(T102), s(T103), X142)

The set Q consists of the following terms:

minusD_in_gga(x0, x1)
U3_gga(x0, x1, x2)
minusC_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(21) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(22) TRUE