(0) Obligation:
Clauses:
goal(X) :- ','(s2l(X, Xs), list(Xs)).
list([]) :- !.
list(X) :- ','(tail(X, T), list(T)).
s2l(0, L) :- ','(!, eq(L, [])).
s2l(X, .(X1, Xs)) :- ','(p(X, P), s2l(P, Xs)).
tail([], []).
tail(.(X2, Xs), Xs).
p(0, 0).
p(s(X), X).
eq(X, X).
Query: goal(g)
(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)
Transformed Prolog program to (Pi-)TRS.
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goalA_in_g(0) → U1_g(listB_in_)
listB_in_ → listB_out_
U1_g(listB_out_) → goalA_out_g(0)
goalA_in_g(s(T9)) → U2_g(T9, pC_in_gaa(T9, X36, X35))
pC_in_gaa(T9, T10, X35) → U7_gaa(T9, T10, X35, s2lD_in_ga(T9, T10))
s2lD_in_ga(0, []) → s2lD_out_ga(0, [])
s2lD_in_ga(s(T16), .(X75, X76)) → U3_ga(T16, X75, X76, s2lD_in_ga(T16, X76))
U3_ga(T16, X75, X76, s2lD_out_ga(T16, X76)) → s2lD_out_ga(s(T16), .(X75, X76))
U7_gaa(T9, T10, X35, s2lD_out_ga(T9, T10)) → U8_gaa(T9, T10, X35, listF_in_ag(X35, T10))
listF_in_ag(X100, T26) → U6_ag(X100, T26, listE_in_g(T26))
listE_in_g([]) → listE_out_g([])
listE_in_g([]) → U4_g(listB_in_)
U4_g(listB_out_) → listE_out_g([])
listE_in_g(.(T36, T38)) → U5_g(T36, T38, listE_in_g(T38))
U5_g(T36, T38, listE_out_g(T38)) → listE_out_g(.(T36, T38))
U6_ag(X100, T26, listE_out_g(T26)) → listF_out_ag(X100, T26)
U8_gaa(T9, T10, X35, listF_out_ag(X35, T10)) → pC_out_gaa(T9, T10, X35)
U2_g(T9, pC_out_gaa(T9, X36, X35)) → goalA_out_g(s(T9))
The argument filtering Pi contains the following mapping:
goalA_in_g(
x1) =
goalA_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
listB_in_ =
listB_in_
listB_out_ =
listB_out_
goalA_out_g(
x1) =
goalA_out_g(
x1)
s(
x1) =
s(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
pC_in_gaa(
x1,
x2,
x3) =
pC_in_gaa(
x1)
U7_gaa(
x1,
x2,
x3,
x4) =
U7_gaa(
x1,
x4)
s2lD_in_ga(
x1,
x2) =
s2lD_in_ga(
x1)
s2lD_out_ga(
x1,
x2) =
s2lD_out_ga(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
.(
x1,
x2) =
.(
x2)
U8_gaa(
x1,
x2,
x3,
x4) =
U8_gaa(
x1,
x2,
x4)
listF_in_ag(
x1,
x2) =
listF_in_ag(
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x2,
x3)
listE_in_g(
x1) =
listE_in_g(
x1)
[] =
[]
listE_out_g(
x1) =
listE_out_g(
x1)
U4_g(
x1) =
U4_g(
x1)
U5_g(
x1,
x2,
x3) =
U5_g(
x2,
x3)
listF_out_ag(
x1,
x2) =
listF_out_ag(
x2)
pC_out_gaa(
x1,
x2,
x3) =
pC_out_gaa(
x1,
x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
GOALA_IN_G(0) → U1_G(listB_in_)
GOALA_IN_G(0) → LISTB_IN_
GOALA_IN_G(s(T9)) → U2_G(T9, pC_in_gaa(T9, X36, X35))
GOALA_IN_G(s(T9)) → PC_IN_GAA(T9, X36, X35)
PC_IN_GAA(T9, T10, X35) → U7_GAA(T9, T10, X35, s2lD_in_ga(T9, T10))
PC_IN_GAA(T9, T10, X35) → S2LD_IN_GA(T9, T10)
S2LD_IN_GA(s(T16), .(X75, X76)) → U3_GA(T16, X75, X76, s2lD_in_ga(T16, X76))
S2LD_IN_GA(s(T16), .(X75, X76)) → S2LD_IN_GA(T16, X76)
U7_GAA(T9, T10, X35, s2lD_out_ga(T9, T10)) → U8_GAA(T9, T10, X35, listF_in_ag(X35, T10))
U7_GAA(T9, T10, X35, s2lD_out_ga(T9, T10)) → LISTF_IN_AG(X35, T10)
LISTF_IN_AG(X100, T26) → U6_AG(X100, T26, listE_in_g(T26))
LISTF_IN_AG(X100, T26) → LISTE_IN_G(T26)
LISTE_IN_G([]) → U4_G(listB_in_)
LISTE_IN_G([]) → LISTB_IN_
LISTE_IN_G(.(T36, T38)) → U5_G(T36, T38, listE_in_g(T38))
LISTE_IN_G(.(T36, T38)) → LISTE_IN_G(T38)
The TRS R consists of the following rules:
goalA_in_g(0) → U1_g(listB_in_)
listB_in_ → listB_out_
U1_g(listB_out_) → goalA_out_g(0)
goalA_in_g(s(T9)) → U2_g(T9, pC_in_gaa(T9, X36, X35))
pC_in_gaa(T9, T10, X35) → U7_gaa(T9, T10, X35, s2lD_in_ga(T9, T10))
s2lD_in_ga(0, []) → s2lD_out_ga(0, [])
s2lD_in_ga(s(T16), .(X75, X76)) → U3_ga(T16, X75, X76, s2lD_in_ga(T16, X76))
U3_ga(T16, X75, X76, s2lD_out_ga(T16, X76)) → s2lD_out_ga(s(T16), .(X75, X76))
U7_gaa(T9, T10, X35, s2lD_out_ga(T9, T10)) → U8_gaa(T9, T10, X35, listF_in_ag(X35, T10))
listF_in_ag(X100, T26) → U6_ag(X100, T26, listE_in_g(T26))
listE_in_g([]) → listE_out_g([])
listE_in_g([]) → U4_g(listB_in_)
U4_g(listB_out_) → listE_out_g([])
listE_in_g(.(T36, T38)) → U5_g(T36, T38, listE_in_g(T38))
U5_g(T36, T38, listE_out_g(T38)) → listE_out_g(.(T36, T38))
U6_ag(X100, T26, listE_out_g(T26)) → listF_out_ag(X100, T26)
U8_gaa(T9, T10, X35, listF_out_ag(X35, T10)) → pC_out_gaa(T9, T10, X35)
U2_g(T9, pC_out_gaa(T9, X36, X35)) → goalA_out_g(s(T9))
The argument filtering Pi contains the following mapping:
goalA_in_g(
x1) =
goalA_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
listB_in_ =
listB_in_
listB_out_ =
listB_out_
goalA_out_g(
x1) =
goalA_out_g(
x1)
s(
x1) =
s(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
pC_in_gaa(
x1,
x2,
x3) =
pC_in_gaa(
x1)
U7_gaa(
x1,
x2,
x3,
x4) =
U7_gaa(
x1,
x4)
s2lD_in_ga(
x1,
x2) =
s2lD_in_ga(
x1)
s2lD_out_ga(
x1,
x2) =
s2lD_out_ga(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
.(
x1,
x2) =
.(
x2)
U8_gaa(
x1,
x2,
x3,
x4) =
U8_gaa(
x1,
x2,
x4)
listF_in_ag(
x1,
x2) =
listF_in_ag(
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x2,
x3)
listE_in_g(
x1) =
listE_in_g(
x1)
[] =
[]
listE_out_g(
x1) =
listE_out_g(
x1)
U4_g(
x1) =
U4_g(
x1)
U5_g(
x1,
x2,
x3) =
U5_g(
x2,
x3)
listF_out_ag(
x1,
x2) =
listF_out_ag(
x2)
pC_out_gaa(
x1,
x2,
x3) =
pC_out_gaa(
x1,
x2)
GOALA_IN_G(
x1) =
GOALA_IN_G(
x1)
U1_G(
x1) =
U1_G(
x1)
LISTB_IN_ =
LISTB_IN_
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
PC_IN_GAA(
x1,
x2,
x3) =
PC_IN_GAA(
x1)
U7_GAA(
x1,
x2,
x3,
x4) =
U7_GAA(
x1,
x4)
S2LD_IN_GA(
x1,
x2) =
S2LD_IN_GA(
x1)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x4)
U8_GAA(
x1,
x2,
x3,
x4) =
U8_GAA(
x1,
x2,
x4)
LISTF_IN_AG(
x1,
x2) =
LISTF_IN_AG(
x2)
U6_AG(
x1,
x2,
x3) =
U6_AG(
x2,
x3)
LISTE_IN_G(
x1) =
LISTE_IN_G(
x1)
U4_G(
x1) =
U4_G(
x1)
U5_G(
x1,
x2,
x3) =
U5_G(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GOALA_IN_G(0) → U1_G(listB_in_)
GOALA_IN_G(0) → LISTB_IN_
GOALA_IN_G(s(T9)) → U2_G(T9, pC_in_gaa(T9, X36, X35))
GOALA_IN_G(s(T9)) → PC_IN_GAA(T9, X36, X35)
PC_IN_GAA(T9, T10, X35) → U7_GAA(T9, T10, X35, s2lD_in_ga(T9, T10))
PC_IN_GAA(T9, T10, X35) → S2LD_IN_GA(T9, T10)
S2LD_IN_GA(s(T16), .(X75, X76)) → U3_GA(T16, X75, X76, s2lD_in_ga(T16, X76))
S2LD_IN_GA(s(T16), .(X75, X76)) → S2LD_IN_GA(T16, X76)
U7_GAA(T9, T10, X35, s2lD_out_ga(T9, T10)) → U8_GAA(T9, T10, X35, listF_in_ag(X35, T10))
U7_GAA(T9, T10, X35, s2lD_out_ga(T9, T10)) → LISTF_IN_AG(X35, T10)
LISTF_IN_AG(X100, T26) → U6_AG(X100, T26, listE_in_g(T26))
LISTF_IN_AG(X100, T26) → LISTE_IN_G(T26)
LISTE_IN_G([]) → U4_G(listB_in_)
LISTE_IN_G([]) → LISTB_IN_
LISTE_IN_G(.(T36, T38)) → U5_G(T36, T38, listE_in_g(T38))
LISTE_IN_G(.(T36, T38)) → LISTE_IN_G(T38)
The TRS R consists of the following rules:
goalA_in_g(0) → U1_g(listB_in_)
listB_in_ → listB_out_
U1_g(listB_out_) → goalA_out_g(0)
goalA_in_g(s(T9)) → U2_g(T9, pC_in_gaa(T9, X36, X35))
pC_in_gaa(T9, T10, X35) → U7_gaa(T9, T10, X35, s2lD_in_ga(T9, T10))
s2lD_in_ga(0, []) → s2lD_out_ga(0, [])
s2lD_in_ga(s(T16), .(X75, X76)) → U3_ga(T16, X75, X76, s2lD_in_ga(T16, X76))
U3_ga(T16, X75, X76, s2lD_out_ga(T16, X76)) → s2lD_out_ga(s(T16), .(X75, X76))
U7_gaa(T9, T10, X35, s2lD_out_ga(T9, T10)) → U8_gaa(T9, T10, X35, listF_in_ag(X35, T10))
listF_in_ag(X100, T26) → U6_ag(X100, T26, listE_in_g(T26))
listE_in_g([]) → listE_out_g([])
listE_in_g([]) → U4_g(listB_in_)
U4_g(listB_out_) → listE_out_g([])
listE_in_g(.(T36, T38)) → U5_g(T36, T38, listE_in_g(T38))
U5_g(T36, T38, listE_out_g(T38)) → listE_out_g(.(T36, T38))
U6_ag(X100, T26, listE_out_g(T26)) → listF_out_ag(X100, T26)
U8_gaa(T9, T10, X35, listF_out_ag(X35, T10)) → pC_out_gaa(T9, T10, X35)
U2_g(T9, pC_out_gaa(T9, X36, X35)) → goalA_out_g(s(T9))
The argument filtering Pi contains the following mapping:
goalA_in_g(
x1) =
goalA_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
listB_in_ =
listB_in_
listB_out_ =
listB_out_
goalA_out_g(
x1) =
goalA_out_g(
x1)
s(
x1) =
s(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
pC_in_gaa(
x1,
x2,
x3) =
pC_in_gaa(
x1)
U7_gaa(
x1,
x2,
x3,
x4) =
U7_gaa(
x1,
x4)
s2lD_in_ga(
x1,
x2) =
s2lD_in_ga(
x1)
s2lD_out_ga(
x1,
x2) =
s2lD_out_ga(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
.(
x1,
x2) =
.(
x2)
U8_gaa(
x1,
x2,
x3,
x4) =
U8_gaa(
x1,
x2,
x4)
listF_in_ag(
x1,
x2) =
listF_in_ag(
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x2,
x3)
listE_in_g(
x1) =
listE_in_g(
x1)
[] =
[]
listE_out_g(
x1) =
listE_out_g(
x1)
U4_g(
x1) =
U4_g(
x1)
U5_g(
x1,
x2,
x3) =
U5_g(
x2,
x3)
listF_out_ag(
x1,
x2) =
listF_out_ag(
x2)
pC_out_gaa(
x1,
x2,
x3) =
pC_out_gaa(
x1,
x2)
GOALA_IN_G(
x1) =
GOALA_IN_G(
x1)
U1_G(
x1) =
U1_G(
x1)
LISTB_IN_ =
LISTB_IN_
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
PC_IN_GAA(
x1,
x2,
x3) =
PC_IN_GAA(
x1)
U7_GAA(
x1,
x2,
x3,
x4) =
U7_GAA(
x1,
x4)
S2LD_IN_GA(
x1,
x2) =
S2LD_IN_GA(
x1)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x4)
U8_GAA(
x1,
x2,
x3,
x4) =
U8_GAA(
x1,
x2,
x4)
LISTF_IN_AG(
x1,
x2) =
LISTF_IN_AG(
x2)
U6_AG(
x1,
x2,
x3) =
U6_AG(
x2,
x3)
LISTE_IN_G(
x1) =
LISTE_IN_G(
x1)
U4_G(
x1) =
U4_G(
x1)
U5_G(
x1,
x2,
x3) =
U5_G(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 14 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LISTE_IN_G(.(T36, T38)) → LISTE_IN_G(T38)
The TRS R consists of the following rules:
goalA_in_g(0) → U1_g(listB_in_)
listB_in_ → listB_out_
U1_g(listB_out_) → goalA_out_g(0)
goalA_in_g(s(T9)) → U2_g(T9, pC_in_gaa(T9, X36, X35))
pC_in_gaa(T9, T10, X35) → U7_gaa(T9, T10, X35, s2lD_in_ga(T9, T10))
s2lD_in_ga(0, []) → s2lD_out_ga(0, [])
s2lD_in_ga(s(T16), .(X75, X76)) → U3_ga(T16, X75, X76, s2lD_in_ga(T16, X76))
U3_ga(T16, X75, X76, s2lD_out_ga(T16, X76)) → s2lD_out_ga(s(T16), .(X75, X76))
U7_gaa(T9, T10, X35, s2lD_out_ga(T9, T10)) → U8_gaa(T9, T10, X35, listF_in_ag(X35, T10))
listF_in_ag(X100, T26) → U6_ag(X100, T26, listE_in_g(T26))
listE_in_g([]) → listE_out_g([])
listE_in_g([]) → U4_g(listB_in_)
U4_g(listB_out_) → listE_out_g([])
listE_in_g(.(T36, T38)) → U5_g(T36, T38, listE_in_g(T38))
U5_g(T36, T38, listE_out_g(T38)) → listE_out_g(.(T36, T38))
U6_ag(X100, T26, listE_out_g(T26)) → listF_out_ag(X100, T26)
U8_gaa(T9, T10, X35, listF_out_ag(X35, T10)) → pC_out_gaa(T9, T10, X35)
U2_g(T9, pC_out_gaa(T9, X36, X35)) → goalA_out_g(s(T9))
The argument filtering Pi contains the following mapping:
goalA_in_g(
x1) =
goalA_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
listB_in_ =
listB_in_
listB_out_ =
listB_out_
goalA_out_g(
x1) =
goalA_out_g(
x1)
s(
x1) =
s(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
pC_in_gaa(
x1,
x2,
x3) =
pC_in_gaa(
x1)
U7_gaa(
x1,
x2,
x3,
x4) =
U7_gaa(
x1,
x4)
s2lD_in_ga(
x1,
x2) =
s2lD_in_ga(
x1)
s2lD_out_ga(
x1,
x2) =
s2lD_out_ga(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
.(
x1,
x2) =
.(
x2)
U8_gaa(
x1,
x2,
x3,
x4) =
U8_gaa(
x1,
x2,
x4)
listF_in_ag(
x1,
x2) =
listF_in_ag(
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x2,
x3)
listE_in_g(
x1) =
listE_in_g(
x1)
[] =
[]
listE_out_g(
x1) =
listE_out_g(
x1)
U4_g(
x1) =
U4_g(
x1)
U5_g(
x1,
x2,
x3) =
U5_g(
x2,
x3)
listF_out_ag(
x1,
x2) =
listF_out_ag(
x2)
pC_out_gaa(
x1,
x2,
x3) =
pC_out_gaa(
x1,
x2)
LISTE_IN_G(
x1) =
LISTE_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LISTE_IN_G(.(T36, T38)) → LISTE_IN_G(T38)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
LISTE_IN_G(
x1) =
LISTE_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LISTE_IN_G(.(T38)) → LISTE_IN_G(T38)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LISTE_IN_G(.(T38)) → LISTE_IN_G(T38)
The graph contains the following edges 1 > 1
(13) YES
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
S2LD_IN_GA(s(T16), .(X75, X76)) → S2LD_IN_GA(T16, X76)
The TRS R consists of the following rules:
goalA_in_g(0) → U1_g(listB_in_)
listB_in_ → listB_out_
U1_g(listB_out_) → goalA_out_g(0)
goalA_in_g(s(T9)) → U2_g(T9, pC_in_gaa(T9, X36, X35))
pC_in_gaa(T9, T10, X35) → U7_gaa(T9, T10, X35, s2lD_in_ga(T9, T10))
s2lD_in_ga(0, []) → s2lD_out_ga(0, [])
s2lD_in_ga(s(T16), .(X75, X76)) → U3_ga(T16, X75, X76, s2lD_in_ga(T16, X76))
U3_ga(T16, X75, X76, s2lD_out_ga(T16, X76)) → s2lD_out_ga(s(T16), .(X75, X76))
U7_gaa(T9, T10, X35, s2lD_out_ga(T9, T10)) → U8_gaa(T9, T10, X35, listF_in_ag(X35, T10))
listF_in_ag(X100, T26) → U6_ag(X100, T26, listE_in_g(T26))
listE_in_g([]) → listE_out_g([])
listE_in_g([]) → U4_g(listB_in_)
U4_g(listB_out_) → listE_out_g([])
listE_in_g(.(T36, T38)) → U5_g(T36, T38, listE_in_g(T38))
U5_g(T36, T38, listE_out_g(T38)) → listE_out_g(.(T36, T38))
U6_ag(X100, T26, listE_out_g(T26)) → listF_out_ag(X100, T26)
U8_gaa(T9, T10, X35, listF_out_ag(X35, T10)) → pC_out_gaa(T9, T10, X35)
U2_g(T9, pC_out_gaa(T9, X36, X35)) → goalA_out_g(s(T9))
The argument filtering Pi contains the following mapping:
goalA_in_g(
x1) =
goalA_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
listB_in_ =
listB_in_
listB_out_ =
listB_out_
goalA_out_g(
x1) =
goalA_out_g(
x1)
s(
x1) =
s(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
pC_in_gaa(
x1,
x2,
x3) =
pC_in_gaa(
x1)
U7_gaa(
x1,
x2,
x3,
x4) =
U7_gaa(
x1,
x4)
s2lD_in_ga(
x1,
x2) =
s2lD_in_ga(
x1)
s2lD_out_ga(
x1,
x2) =
s2lD_out_ga(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
.(
x1,
x2) =
.(
x2)
U8_gaa(
x1,
x2,
x3,
x4) =
U8_gaa(
x1,
x2,
x4)
listF_in_ag(
x1,
x2) =
listF_in_ag(
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x2,
x3)
listE_in_g(
x1) =
listE_in_g(
x1)
[] =
[]
listE_out_g(
x1) =
listE_out_g(
x1)
U4_g(
x1) =
U4_g(
x1)
U5_g(
x1,
x2,
x3) =
U5_g(
x2,
x3)
listF_out_ag(
x1,
x2) =
listF_out_ag(
x2)
pC_out_gaa(
x1,
x2,
x3) =
pC_out_gaa(
x1,
x2)
S2LD_IN_GA(
x1,
x2) =
S2LD_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
S2LD_IN_GA(s(T16), .(X75, X76)) → S2LD_IN_GA(T16, X76)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
.(
x1,
x2) =
.(
x2)
S2LD_IN_GA(
x1,
x2) =
S2LD_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S2LD_IN_GA(s(T16)) → S2LD_IN_GA(T16)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- S2LD_IN_GA(s(T16)) → S2LD_IN_GA(T16)
The graph contains the following edges 1 > 1
(20) YES