(0) Obligation:

Clauses:

goal(X) :- ','(s2l(X, Xs), append(Xs, X1, X2)).
append([], Y, Z) :- ','(!, eq(Y, Z)).
append(X, Y, .(H, Z)) :- ','(head(X, H), ','(tail(X, T), append(T, Y, Z))).
s2l(0, L) :- ','(!, eq(L, [])).
s2l(X, .(X3, Xs)) :- ','(p(X, P), s2l(P, Xs)).
head([], X4).
head(.(H, X5), H).
tail([], []).
tail(.(X6, Xs), Xs).
p(0, 0).
p(s(X), X).
eq(X, X).

Query: goal(g)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

s2lA(0, []).
s2lA(s(T16), .(X111, X112)) :- s2lA(T16, X112).
appendB(X53, X53).
appendC([], X210, X210).
appendC([], X235, .(X251, X237)) :- appendB(X235, X237).
appendC(.(T50, T52), X235, .(T50, X237)) :- appendC(T52, X235, X237).
goalD(0) :- appendB(X10, X11).
goalD(s(T9)) :- s2lA(T9, X72).
goalD(s(T9)) :- ','(s2lA(T9, T31), appendC(T31, X151, X153)).

Query: goalD(g)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
goalD_in: (b)
s2lA_in: (b,f)
appendC_in: (b,f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

goalD_in_g(0) → U4_g(appendB_in_aa(X10, X11))
appendB_in_aa(X53, X53) → appendB_out_aa(X53, X53)
U4_g(appendB_out_aa(X10, X11)) → goalD_out_g(0)
goalD_in_g(s(T9)) → U5_g(T9, s2lA_in_ga(T9, X72))
s2lA_in_ga(0, []) → s2lA_out_ga(0, [])
s2lA_in_ga(s(T16), .(X111, X112)) → U1_ga(T16, X111, X112, s2lA_in_ga(T16, X112))
U1_ga(T16, X111, X112, s2lA_out_ga(T16, X112)) → s2lA_out_ga(s(T16), .(X111, X112))
U5_g(T9, s2lA_out_ga(T9, X72)) → goalD_out_g(s(T9))
goalD_in_g(s(T9)) → U6_g(T9, s2lA_in_ga(T9, T31))
U6_g(T9, s2lA_out_ga(T9, T31)) → U7_g(T9, appendC_in_gaa(T31, X151, X153))
appendC_in_gaa([], X210, X210) → appendC_out_gaa([], X210, X210)
appendC_in_gaa([], X235, .(X251, X237)) → U2_gaa(X235, X251, X237, appendB_in_aa(X235, X237))
U2_gaa(X235, X251, X237, appendB_out_aa(X235, X237)) → appendC_out_gaa([], X235, .(X251, X237))
appendC_in_gaa(.(T50, T52), X235, .(T50, X237)) → U3_gaa(T50, T52, X235, X237, appendC_in_gaa(T52, X235, X237))
U3_gaa(T50, T52, X235, X237, appendC_out_gaa(T52, X235, X237)) → appendC_out_gaa(.(T50, T52), X235, .(T50, X237))
U7_g(T9, appendC_out_gaa(T31, X151, X153)) → goalD_out_g(s(T9))

The argument filtering Pi contains the following mapping:
goalD_in_g(x1)  =  goalD_in_g(x1)
0  =  0
U4_g(x1)  =  U4_g(x1)
appendB_in_aa(x1, x2)  =  appendB_in_aa
appendB_out_aa(x1, x2)  =  appendB_out_aa
goalD_out_g(x1)  =  goalD_out_g
s(x1)  =  s(x1)
U5_g(x1, x2)  =  U5_g(x2)
s2lA_in_ga(x1, x2)  =  s2lA_in_ga(x1)
s2lA_out_ga(x1, x2)  =  s2lA_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
.(x1, x2)  =  .(x2)
U6_g(x1, x2)  =  U6_g(x2)
U7_g(x1, x2)  =  U7_g(x2)
appendC_in_gaa(x1, x2, x3)  =  appendC_in_gaa(x1)
[]  =  []
appendC_out_gaa(x1, x2, x3)  =  appendC_out_gaa
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

goalD_in_g(0) → U4_g(appendB_in_aa(X10, X11))
appendB_in_aa(X53, X53) → appendB_out_aa(X53, X53)
U4_g(appendB_out_aa(X10, X11)) → goalD_out_g(0)
goalD_in_g(s(T9)) → U5_g(T9, s2lA_in_ga(T9, X72))
s2lA_in_ga(0, []) → s2lA_out_ga(0, [])
s2lA_in_ga(s(T16), .(X111, X112)) → U1_ga(T16, X111, X112, s2lA_in_ga(T16, X112))
U1_ga(T16, X111, X112, s2lA_out_ga(T16, X112)) → s2lA_out_ga(s(T16), .(X111, X112))
U5_g(T9, s2lA_out_ga(T9, X72)) → goalD_out_g(s(T9))
goalD_in_g(s(T9)) → U6_g(T9, s2lA_in_ga(T9, T31))
U6_g(T9, s2lA_out_ga(T9, T31)) → U7_g(T9, appendC_in_gaa(T31, X151, X153))
appendC_in_gaa([], X210, X210) → appendC_out_gaa([], X210, X210)
appendC_in_gaa([], X235, .(X251, X237)) → U2_gaa(X235, X251, X237, appendB_in_aa(X235, X237))
U2_gaa(X235, X251, X237, appendB_out_aa(X235, X237)) → appendC_out_gaa([], X235, .(X251, X237))
appendC_in_gaa(.(T50, T52), X235, .(T50, X237)) → U3_gaa(T50, T52, X235, X237, appendC_in_gaa(T52, X235, X237))
U3_gaa(T50, T52, X235, X237, appendC_out_gaa(T52, X235, X237)) → appendC_out_gaa(.(T50, T52), X235, .(T50, X237))
U7_g(T9, appendC_out_gaa(T31, X151, X153)) → goalD_out_g(s(T9))

The argument filtering Pi contains the following mapping:
goalD_in_g(x1)  =  goalD_in_g(x1)
0  =  0
U4_g(x1)  =  U4_g(x1)
appendB_in_aa(x1, x2)  =  appendB_in_aa
appendB_out_aa(x1, x2)  =  appendB_out_aa
goalD_out_g(x1)  =  goalD_out_g
s(x1)  =  s(x1)
U5_g(x1, x2)  =  U5_g(x2)
s2lA_in_ga(x1, x2)  =  s2lA_in_ga(x1)
s2lA_out_ga(x1, x2)  =  s2lA_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
.(x1, x2)  =  .(x2)
U6_g(x1, x2)  =  U6_g(x2)
U7_g(x1, x2)  =  U7_g(x2)
appendC_in_gaa(x1, x2, x3)  =  appendC_in_gaa(x1)
[]  =  []
appendC_out_gaa(x1, x2, x3)  =  appendC_out_gaa
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x5)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

GOALD_IN_G(0) → U4_G(appendB_in_aa(X10, X11))
GOALD_IN_G(0) → APPENDB_IN_AA(X10, X11)
GOALD_IN_G(s(T9)) → U5_G(T9, s2lA_in_ga(T9, X72))
GOALD_IN_G(s(T9)) → S2LA_IN_GA(T9, X72)
S2LA_IN_GA(s(T16), .(X111, X112)) → U1_GA(T16, X111, X112, s2lA_in_ga(T16, X112))
S2LA_IN_GA(s(T16), .(X111, X112)) → S2LA_IN_GA(T16, X112)
GOALD_IN_G(s(T9)) → U6_G(T9, s2lA_in_ga(T9, T31))
U6_G(T9, s2lA_out_ga(T9, T31)) → U7_G(T9, appendC_in_gaa(T31, X151, X153))
U6_G(T9, s2lA_out_ga(T9, T31)) → APPENDC_IN_GAA(T31, X151, X153)
APPENDC_IN_GAA([], X235, .(X251, X237)) → U2_GAA(X235, X251, X237, appendB_in_aa(X235, X237))
APPENDC_IN_GAA([], X235, .(X251, X237)) → APPENDB_IN_AA(X235, X237)
APPENDC_IN_GAA(.(T50, T52), X235, .(T50, X237)) → U3_GAA(T50, T52, X235, X237, appendC_in_gaa(T52, X235, X237))
APPENDC_IN_GAA(.(T50, T52), X235, .(T50, X237)) → APPENDC_IN_GAA(T52, X235, X237)

The TRS R consists of the following rules:

goalD_in_g(0) → U4_g(appendB_in_aa(X10, X11))
appendB_in_aa(X53, X53) → appendB_out_aa(X53, X53)
U4_g(appendB_out_aa(X10, X11)) → goalD_out_g(0)
goalD_in_g(s(T9)) → U5_g(T9, s2lA_in_ga(T9, X72))
s2lA_in_ga(0, []) → s2lA_out_ga(0, [])
s2lA_in_ga(s(T16), .(X111, X112)) → U1_ga(T16, X111, X112, s2lA_in_ga(T16, X112))
U1_ga(T16, X111, X112, s2lA_out_ga(T16, X112)) → s2lA_out_ga(s(T16), .(X111, X112))
U5_g(T9, s2lA_out_ga(T9, X72)) → goalD_out_g(s(T9))
goalD_in_g(s(T9)) → U6_g(T9, s2lA_in_ga(T9, T31))
U6_g(T9, s2lA_out_ga(T9, T31)) → U7_g(T9, appendC_in_gaa(T31, X151, X153))
appendC_in_gaa([], X210, X210) → appendC_out_gaa([], X210, X210)
appendC_in_gaa([], X235, .(X251, X237)) → U2_gaa(X235, X251, X237, appendB_in_aa(X235, X237))
U2_gaa(X235, X251, X237, appendB_out_aa(X235, X237)) → appendC_out_gaa([], X235, .(X251, X237))
appendC_in_gaa(.(T50, T52), X235, .(T50, X237)) → U3_gaa(T50, T52, X235, X237, appendC_in_gaa(T52, X235, X237))
U3_gaa(T50, T52, X235, X237, appendC_out_gaa(T52, X235, X237)) → appendC_out_gaa(.(T50, T52), X235, .(T50, X237))
U7_g(T9, appendC_out_gaa(T31, X151, X153)) → goalD_out_g(s(T9))

The argument filtering Pi contains the following mapping:
goalD_in_g(x1)  =  goalD_in_g(x1)
0  =  0
U4_g(x1)  =  U4_g(x1)
appendB_in_aa(x1, x2)  =  appendB_in_aa
appendB_out_aa(x1, x2)  =  appendB_out_aa
goalD_out_g(x1)  =  goalD_out_g
s(x1)  =  s(x1)
U5_g(x1, x2)  =  U5_g(x2)
s2lA_in_ga(x1, x2)  =  s2lA_in_ga(x1)
s2lA_out_ga(x1, x2)  =  s2lA_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
.(x1, x2)  =  .(x2)
U6_g(x1, x2)  =  U6_g(x2)
U7_g(x1, x2)  =  U7_g(x2)
appendC_in_gaa(x1, x2, x3)  =  appendC_in_gaa(x1)
[]  =  []
appendC_out_gaa(x1, x2, x3)  =  appendC_out_gaa
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x5)
GOALD_IN_G(x1)  =  GOALD_IN_G(x1)
U4_G(x1)  =  U4_G(x1)
APPENDB_IN_AA(x1, x2)  =  APPENDB_IN_AA
U5_G(x1, x2)  =  U5_G(x2)
S2LA_IN_GA(x1, x2)  =  S2LA_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x4)
U6_G(x1, x2)  =  U6_G(x2)
U7_G(x1, x2)  =  U7_G(x2)
APPENDC_IN_GAA(x1, x2, x3)  =  APPENDC_IN_GAA(x1)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)
U3_GAA(x1, x2, x3, x4, x5)  =  U3_GAA(x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GOALD_IN_G(0) → U4_G(appendB_in_aa(X10, X11))
GOALD_IN_G(0) → APPENDB_IN_AA(X10, X11)
GOALD_IN_G(s(T9)) → U5_G(T9, s2lA_in_ga(T9, X72))
GOALD_IN_G(s(T9)) → S2LA_IN_GA(T9, X72)
S2LA_IN_GA(s(T16), .(X111, X112)) → U1_GA(T16, X111, X112, s2lA_in_ga(T16, X112))
S2LA_IN_GA(s(T16), .(X111, X112)) → S2LA_IN_GA(T16, X112)
GOALD_IN_G(s(T9)) → U6_G(T9, s2lA_in_ga(T9, T31))
U6_G(T9, s2lA_out_ga(T9, T31)) → U7_G(T9, appendC_in_gaa(T31, X151, X153))
U6_G(T9, s2lA_out_ga(T9, T31)) → APPENDC_IN_GAA(T31, X151, X153)
APPENDC_IN_GAA([], X235, .(X251, X237)) → U2_GAA(X235, X251, X237, appendB_in_aa(X235, X237))
APPENDC_IN_GAA([], X235, .(X251, X237)) → APPENDB_IN_AA(X235, X237)
APPENDC_IN_GAA(.(T50, T52), X235, .(T50, X237)) → U3_GAA(T50, T52, X235, X237, appendC_in_gaa(T52, X235, X237))
APPENDC_IN_GAA(.(T50, T52), X235, .(T50, X237)) → APPENDC_IN_GAA(T52, X235, X237)

The TRS R consists of the following rules:

goalD_in_g(0) → U4_g(appendB_in_aa(X10, X11))
appendB_in_aa(X53, X53) → appendB_out_aa(X53, X53)
U4_g(appendB_out_aa(X10, X11)) → goalD_out_g(0)
goalD_in_g(s(T9)) → U5_g(T9, s2lA_in_ga(T9, X72))
s2lA_in_ga(0, []) → s2lA_out_ga(0, [])
s2lA_in_ga(s(T16), .(X111, X112)) → U1_ga(T16, X111, X112, s2lA_in_ga(T16, X112))
U1_ga(T16, X111, X112, s2lA_out_ga(T16, X112)) → s2lA_out_ga(s(T16), .(X111, X112))
U5_g(T9, s2lA_out_ga(T9, X72)) → goalD_out_g(s(T9))
goalD_in_g(s(T9)) → U6_g(T9, s2lA_in_ga(T9, T31))
U6_g(T9, s2lA_out_ga(T9, T31)) → U7_g(T9, appendC_in_gaa(T31, X151, X153))
appendC_in_gaa([], X210, X210) → appendC_out_gaa([], X210, X210)
appendC_in_gaa([], X235, .(X251, X237)) → U2_gaa(X235, X251, X237, appendB_in_aa(X235, X237))
U2_gaa(X235, X251, X237, appendB_out_aa(X235, X237)) → appendC_out_gaa([], X235, .(X251, X237))
appendC_in_gaa(.(T50, T52), X235, .(T50, X237)) → U3_gaa(T50, T52, X235, X237, appendC_in_gaa(T52, X235, X237))
U3_gaa(T50, T52, X235, X237, appendC_out_gaa(T52, X235, X237)) → appendC_out_gaa(.(T50, T52), X235, .(T50, X237))
U7_g(T9, appendC_out_gaa(T31, X151, X153)) → goalD_out_g(s(T9))

The argument filtering Pi contains the following mapping:
goalD_in_g(x1)  =  goalD_in_g(x1)
0  =  0
U4_g(x1)  =  U4_g(x1)
appendB_in_aa(x1, x2)  =  appendB_in_aa
appendB_out_aa(x1, x2)  =  appendB_out_aa
goalD_out_g(x1)  =  goalD_out_g
s(x1)  =  s(x1)
U5_g(x1, x2)  =  U5_g(x2)
s2lA_in_ga(x1, x2)  =  s2lA_in_ga(x1)
s2lA_out_ga(x1, x2)  =  s2lA_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
.(x1, x2)  =  .(x2)
U6_g(x1, x2)  =  U6_g(x2)
U7_g(x1, x2)  =  U7_g(x2)
appendC_in_gaa(x1, x2, x3)  =  appendC_in_gaa(x1)
[]  =  []
appendC_out_gaa(x1, x2, x3)  =  appendC_out_gaa
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x5)
GOALD_IN_G(x1)  =  GOALD_IN_G(x1)
U4_G(x1)  =  U4_G(x1)
APPENDB_IN_AA(x1, x2)  =  APPENDB_IN_AA
U5_G(x1, x2)  =  U5_G(x2)
S2LA_IN_GA(x1, x2)  =  S2LA_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x4)
U6_G(x1, x2)  =  U6_G(x2)
U7_G(x1, x2)  =  U7_G(x2)
APPENDC_IN_GAA(x1, x2, x3)  =  APPENDC_IN_GAA(x1)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)
U3_GAA(x1, x2, x3, x4, x5)  =  U3_GAA(x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 11 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDC_IN_GAA(.(T50, T52), X235, .(T50, X237)) → APPENDC_IN_GAA(T52, X235, X237)

The TRS R consists of the following rules:

goalD_in_g(0) → U4_g(appendB_in_aa(X10, X11))
appendB_in_aa(X53, X53) → appendB_out_aa(X53, X53)
U4_g(appendB_out_aa(X10, X11)) → goalD_out_g(0)
goalD_in_g(s(T9)) → U5_g(T9, s2lA_in_ga(T9, X72))
s2lA_in_ga(0, []) → s2lA_out_ga(0, [])
s2lA_in_ga(s(T16), .(X111, X112)) → U1_ga(T16, X111, X112, s2lA_in_ga(T16, X112))
U1_ga(T16, X111, X112, s2lA_out_ga(T16, X112)) → s2lA_out_ga(s(T16), .(X111, X112))
U5_g(T9, s2lA_out_ga(T9, X72)) → goalD_out_g(s(T9))
goalD_in_g(s(T9)) → U6_g(T9, s2lA_in_ga(T9, T31))
U6_g(T9, s2lA_out_ga(T9, T31)) → U7_g(T9, appendC_in_gaa(T31, X151, X153))
appendC_in_gaa([], X210, X210) → appendC_out_gaa([], X210, X210)
appendC_in_gaa([], X235, .(X251, X237)) → U2_gaa(X235, X251, X237, appendB_in_aa(X235, X237))
U2_gaa(X235, X251, X237, appendB_out_aa(X235, X237)) → appendC_out_gaa([], X235, .(X251, X237))
appendC_in_gaa(.(T50, T52), X235, .(T50, X237)) → U3_gaa(T50, T52, X235, X237, appendC_in_gaa(T52, X235, X237))
U3_gaa(T50, T52, X235, X237, appendC_out_gaa(T52, X235, X237)) → appendC_out_gaa(.(T50, T52), X235, .(T50, X237))
U7_g(T9, appendC_out_gaa(T31, X151, X153)) → goalD_out_g(s(T9))

The argument filtering Pi contains the following mapping:
goalD_in_g(x1)  =  goalD_in_g(x1)
0  =  0
U4_g(x1)  =  U4_g(x1)
appendB_in_aa(x1, x2)  =  appendB_in_aa
appendB_out_aa(x1, x2)  =  appendB_out_aa
goalD_out_g(x1)  =  goalD_out_g
s(x1)  =  s(x1)
U5_g(x1, x2)  =  U5_g(x2)
s2lA_in_ga(x1, x2)  =  s2lA_in_ga(x1)
s2lA_out_ga(x1, x2)  =  s2lA_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
.(x1, x2)  =  .(x2)
U6_g(x1, x2)  =  U6_g(x2)
U7_g(x1, x2)  =  U7_g(x2)
appendC_in_gaa(x1, x2, x3)  =  appendC_in_gaa(x1)
[]  =  []
appendC_out_gaa(x1, x2, x3)  =  appendC_out_gaa
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x5)
APPENDC_IN_GAA(x1, x2, x3)  =  APPENDC_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDC_IN_GAA(.(T50, T52), X235, .(T50, X237)) → APPENDC_IN_GAA(T52, X235, X237)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
APPENDC_IN_GAA(x1, x2, x3)  =  APPENDC_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDC_IN_GAA(.(T52)) → APPENDC_IN_GAA(T52)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDC_IN_GAA(.(T52)) → APPENDC_IN_GAA(T52)
    The graph contains the following edges 1 > 1

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

S2LA_IN_GA(s(T16), .(X111, X112)) → S2LA_IN_GA(T16, X112)

The TRS R consists of the following rules:

goalD_in_g(0) → U4_g(appendB_in_aa(X10, X11))
appendB_in_aa(X53, X53) → appendB_out_aa(X53, X53)
U4_g(appendB_out_aa(X10, X11)) → goalD_out_g(0)
goalD_in_g(s(T9)) → U5_g(T9, s2lA_in_ga(T9, X72))
s2lA_in_ga(0, []) → s2lA_out_ga(0, [])
s2lA_in_ga(s(T16), .(X111, X112)) → U1_ga(T16, X111, X112, s2lA_in_ga(T16, X112))
U1_ga(T16, X111, X112, s2lA_out_ga(T16, X112)) → s2lA_out_ga(s(T16), .(X111, X112))
U5_g(T9, s2lA_out_ga(T9, X72)) → goalD_out_g(s(T9))
goalD_in_g(s(T9)) → U6_g(T9, s2lA_in_ga(T9, T31))
U6_g(T9, s2lA_out_ga(T9, T31)) → U7_g(T9, appendC_in_gaa(T31, X151, X153))
appendC_in_gaa([], X210, X210) → appendC_out_gaa([], X210, X210)
appendC_in_gaa([], X235, .(X251, X237)) → U2_gaa(X235, X251, X237, appendB_in_aa(X235, X237))
U2_gaa(X235, X251, X237, appendB_out_aa(X235, X237)) → appendC_out_gaa([], X235, .(X251, X237))
appendC_in_gaa(.(T50, T52), X235, .(T50, X237)) → U3_gaa(T50, T52, X235, X237, appendC_in_gaa(T52, X235, X237))
U3_gaa(T50, T52, X235, X237, appendC_out_gaa(T52, X235, X237)) → appendC_out_gaa(.(T50, T52), X235, .(T50, X237))
U7_g(T9, appendC_out_gaa(T31, X151, X153)) → goalD_out_g(s(T9))

The argument filtering Pi contains the following mapping:
goalD_in_g(x1)  =  goalD_in_g(x1)
0  =  0
U4_g(x1)  =  U4_g(x1)
appendB_in_aa(x1, x2)  =  appendB_in_aa
appendB_out_aa(x1, x2)  =  appendB_out_aa
goalD_out_g(x1)  =  goalD_out_g
s(x1)  =  s(x1)
U5_g(x1, x2)  =  U5_g(x2)
s2lA_in_ga(x1, x2)  =  s2lA_in_ga(x1)
s2lA_out_ga(x1, x2)  =  s2lA_out_ga(x2)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x4)
.(x1, x2)  =  .(x2)
U6_g(x1, x2)  =  U6_g(x2)
U7_g(x1, x2)  =  U7_g(x2)
appendC_in_gaa(x1, x2, x3)  =  appendC_in_gaa(x1)
[]  =  []
appendC_out_gaa(x1, x2, x3)  =  appendC_out_gaa
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x5)
S2LA_IN_GA(x1, x2)  =  S2LA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

S2LA_IN_GA(s(T16), .(X111, X112)) → S2LA_IN_GA(T16, X112)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
S2LA_IN_GA(x1, x2)  =  S2LA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S2LA_IN_GA(s(T16)) → S2LA_IN_GA(T16)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • S2LA_IN_GA(s(T16)) → S2LA_IN_GA(T16)
    The graph contains the following edges 1 > 1

(22) YES