(0) Obligation:

Clauses:

p(X) :- ','(q(X), r(X)).
p(X) :- =(X, 2).
q(X) :- ','(=(X, 1), !).
q(X) :- =(X, 3).
r(X) :- ','(=(X, 1), !).
r(X) :- =(X, 4).
=(X, X).

Query: p(a)

(1) BuiltinConflictTransformerProof (EQUIVALENT transformation)

Renamed defined predicates conflicting with built-in predicates [PROLOG].

(2) Obligation:

Clauses:

p(X) :- ','(q(X), r(X)).
p(X) :- user_defined_=(X, 2).
q(X) :- ','(user_defined_=(X, 1), !).
q(X) :- user_defined_=(X, 3).
r(X) :- ','(user_defined_=(X, 1), !).
r(X) :- user_defined_=(X, 4).
user_defined_=(X, X).

Query: p(a)

(3) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

pA_in_a(1) → pA_out_a(1)
pA_in_a(2) → pA_out_a(2)

The argument filtering Pi contains the following mapping:
pA_in_a(x1)  =  pA_in_a
pA_out_a(x1)  =  pA_out_a(x1)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:

pA_in_a(1) → pA_out_a(1)
pA_in_a(2) → pA_out_a(2)

The argument filtering Pi contains the following mapping:
pA_in_a(x1)  =  pA_in_a
pA_out_a(x1)  =  pA_out_a(x1)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
P is empty.
The TRS R consists of the following rules:

pA_in_a(1) → pA_out_a(1)
pA_in_a(2) → pA_out_a(2)

The argument filtering Pi contains the following mapping:
pA_in_a(x1)  =  pA_in_a
pA_out_a(x1)  =  pA_out_a(x1)

We have to consider all (P,R,Pi)-chains

(7) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,R,Pi) chain.

(8) YES