(0) Obligation:
Clauses:
less(0, Y) :- ','(!, =(Y, s(X2))).
less(X, Y) :- ','(p(X, X1), ','(p(Y, Y1), less(X1, Y1))).
p(0, 0).
p(s(X), X).
=(X, X).
Query: less(g,a)
(1) BuiltinConflictTransformerProof (EQUIVALENT transformation)
Renamed defined predicates conflicting with built-in predicates [PROLOG].
(2) Obligation:
Clauses:
less(0, Y) :- ','(!, user_defined_=(Y, s(X2))).
less(X, Y) :- ','(p(X, X1), ','(p(Y, Y1), less(X1, Y1))).
p(0, 0).
p(s(X), X).
user_defined_=(X, X).
Query: less(g,a)
(3) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)
Transformed Prolog program to (Pi-)TRS.
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
lessA_in_ga(0, s(T11)) → lessA_out_ga(0, s(T11))
lessA_in_ga(s(T19), 0) → U1_ga(T19, lessB_in_g(T19))
lessB_in_g(s(T25)) → U3_g(T25, lessB_in_g(T25))
U3_g(T25, lessB_out_g(T25)) → lessB_out_g(s(T25))
U1_ga(T19, lessB_out_g(T19)) → lessA_out_ga(s(T19), 0)
lessA_in_ga(s(T19), s(T29)) → U2_ga(T19, T29, lessA_in_ga(T19, T29))
U2_ga(T19, T29, lessA_out_ga(T19, T29)) → lessA_out_ga(s(T19), s(T29))
The argument filtering Pi contains the following mapping:
lessA_in_ga(
x1,
x2) =
lessA_in_ga(
x1)
0 =
0
lessA_out_ga(
x1,
x2) =
lessA_out_ga(
x1)
s(
x1) =
s(
x1)
U1_ga(
x1,
x2) =
U1_ga(
x1,
x2)
lessB_in_g(
x1) =
lessB_in_g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
lessB_out_g(
x1) =
lessB_out_g(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
LESSA_IN_GA(s(T19), 0) → U1_GA(T19, lessB_in_g(T19))
LESSA_IN_GA(s(T19), 0) → LESSB_IN_G(T19)
LESSB_IN_G(s(T25)) → U3_G(T25, lessB_in_g(T25))
LESSB_IN_G(s(T25)) → LESSB_IN_G(T25)
LESSA_IN_GA(s(T19), s(T29)) → U2_GA(T19, T29, lessA_in_ga(T19, T29))
LESSA_IN_GA(s(T19), s(T29)) → LESSA_IN_GA(T19, T29)
The TRS R consists of the following rules:
lessA_in_ga(0, s(T11)) → lessA_out_ga(0, s(T11))
lessA_in_ga(s(T19), 0) → U1_ga(T19, lessB_in_g(T19))
lessB_in_g(s(T25)) → U3_g(T25, lessB_in_g(T25))
U3_g(T25, lessB_out_g(T25)) → lessB_out_g(s(T25))
U1_ga(T19, lessB_out_g(T19)) → lessA_out_ga(s(T19), 0)
lessA_in_ga(s(T19), s(T29)) → U2_ga(T19, T29, lessA_in_ga(T19, T29))
U2_ga(T19, T29, lessA_out_ga(T19, T29)) → lessA_out_ga(s(T19), s(T29))
The argument filtering Pi contains the following mapping:
lessA_in_ga(
x1,
x2) =
lessA_in_ga(
x1)
0 =
0
lessA_out_ga(
x1,
x2) =
lessA_out_ga(
x1)
s(
x1) =
s(
x1)
U1_ga(
x1,
x2) =
U1_ga(
x1,
x2)
lessB_in_g(
x1) =
lessB_in_g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
lessB_out_g(
x1) =
lessB_out_g(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
LESSA_IN_GA(
x1,
x2) =
LESSA_IN_GA(
x1)
U1_GA(
x1,
x2) =
U1_GA(
x1,
x2)
LESSB_IN_G(
x1) =
LESSB_IN_G(
x1)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESSA_IN_GA(s(T19), 0) → U1_GA(T19, lessB_in_g(T19))
LESSA_IN_GA(s(T19), 0) → LESSB_IN_G(T19)
LESSB_IN_G(s(T25)) → U3_G(T25, lessB_in_g(T25))
LESSB_IN_G(s(T25)) → LESSB_IN_G(T25)
LESSA_IN_GA(s(T19), s(T29)) → U2_GA(T19, T29, lessA_in_ga(T19, T29))
LESSA_IN_GA(s(T19), s(T29)) → LESSA_IN_GA(T19, T29)
The TRS R consists of the following rules:
lessA_in_ga(0, s(T11)) → lessA_out_ga(0, s(T11))
lessA_in_ga(s(T19), 0) → U1_ga(T19, lessB_in_g(T19))
lessB_in_g(s(T25)) → U3_g(T25, lessB_in_g(T25))
U3_g(T25, lessB_out_g(T25)) → lessB_out_g(s(T25))
U1_ga(T19, lessB_out_g(T19)) → lessA_out_ga(s(T19), 0)
lessA_in_ga(s(T19), s(T29)) → U2_ga(T19, T29, lessA_in_ga(T19, T29))
U2_ga(T19, T29, lessA_out_ga(T19, T29)) → lessA_out_ga(s(T19), s(T29))
The argument filtering Pi contains the following mapping:
lessA_in_ga(
x1,
x2) =
lessA_in_ga(
x1)
0 =
0
lessA_out_ga(
x1,
x2) =
lessA_out_ga(
x1)
s(
x1) =
s(
x1)
U1_ga(
x1,
x2) =
U1_ga(
x1,
x2)
lessB_in_g(
x1) =
lessB_in_g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
lessB_out_g(
x1) =
lessB_out_g(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
LESSA_IN_GA(
x1,
x2) =
LESSA_IN_GA(
x1)
U1_GA(
x1,
x2) =
U1_GA(
x1,
x2)
LESSB_IN_G(
x1) =
LESSB_IN_G(
x1)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESSB_IN_G(s(T25)) → LESSB_IN_G(T25)
The TRS R consists of the following rules:
lessA_in_ga(0, s(T11)) → lessA_out_ga(0, s(T11))
lessA_in_ga(s(T19), 0) → U1_ga(T19, lessB_in_g(T19))
lessB_in_g(s(T25)) → U3_g(T25, lessB_in_g(T25))
U3_g(T25, lessB_out_g(T25)) → lessB_out_g(s(T25))
U1_ga(T19, lessB_out_g(T19)) → lessA_out_ga(s(T19), 0)
lessA_in_ga(s(T19), s(T29)) → U2_ga(T19, T29, lessA_in_ga(T19, T29))
U2_ga(T19, T29, lessA_out_ga(T19, T29)) → lessA_out_ga(s(T19), s(T29))
The argument filtering Pi contains the following mapping:
lessA_in_ga(
x1,
x2) =
lessA_in_ga(
x1)
0 =
0
lessA_out_ga(
x1,
x2) =
lessA_out_ga(
x1)
s(
x1) =
s(
x1)
U1_ga(
x1,
x2) =
U1_ga(
x1,
x2)
lessB_in_g(
x1) =
lessB_in_g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
lessB_out_g(
x1) =
lessB_out_g(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
LESSB_IN_G(
x1) =
LESSB_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESSB_IN_G(s(T25)) → LESSB_IN_G(T25)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LESSB_IN_G(s(T25)) → LESSB_IN_G(T25)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LESSB_IN_G(s(T25)) → LESSB_IN_G(T25)
The graph contains the following edges 1 > 1
(15) YES
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESSA_IN_GA(s(T19), s(T29)) → LESSA_IN_GA(T19, T29)
The TRS R consists of the following rules:
lessA_in_ga(0, s(T11)) → lessA_out_ga(0, s(T11))
lessA_in_ga(s(T19), 0) → U1_ga(T19, lessB_in_g(T19))
lessB_in_g(s(T25)) → U3_g(T25, lessB_in_g(T25))
U3_g(T25, lessB_out_g(T25)) → lessB_out_g(s(T25))
U1_ga(T19, lessB_out_g(T19)) → lessA_out_ga(s(T19), 0)
lessA_in_ga(s(T19), s(T29)) → U2_ga(T19, T29, lessA_in_ga(T19, T29))
U2_ga(T19, T29, lessA_out_ga(T19, T29)) → lessA_out_ga(s(T19), s(T29))
The argument filtering Pi contains the following mapping:
lessA_in_ga(
x1,
x2) =
lessA_in_ga(
x1)
0 =
0
lessA_out_ga(
x1,
x2) =
lessA_out_ga(
x1)
s(
x1) =
s(
x1)
U1_ga(
x1,
x2) =
U1_ga(
x1,
x2)
lessB_in_g(
x1) =
lessB_in_g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
lessB_out_g(
x1) =
lessB_out_g(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
LESSA_IN_GA(
x1,
x2) =
LESSA_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(17) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESSA_IN_GA(s(T19), s(T29)) → LESSA_IN_GA(T19, T29)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
LESSA_IN_GA(
x1,
x2) =
LESSA_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LESSA_IN_GA(s(T19)) → LESSA_IN_GA(T19)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LESSA_IN_GA(s(T19)) → LESSA_IN_GA(T19)
The graph contains the following edges 1 > 1
(22) YES