(0) Obligation:

Clauses:

p(X, X, 1) :- !.
p(X, Y, Z) :- ','(=(Z, 1), ','(=(Y, X), p(X, Y, Z))).
=(X, X).

Query: p(a,a,a)

(1) BuiltinConflictTransformerProof (EQUIVALENT transformation)

Renamed defined predicates conflicting with built-in predicates [PROLOG].

(2) Obligation:

Clauses:

p(X, X, 1) :- !.
p(X, Y, Z) :- ','(user_defined_=(Z, 1), ','(user_defined_=(Y, X), p(X, Y, Z))).
user_defined_=(X, X).

Query: p(a,a,a)

(3) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

pA_in_aaa(T5, T5, 1) → pA_out_aaa(T5, T5, 1)

The argument filtering Pi contains the following mapping:
pA_in_aaa(x1, x2, x3)  =  pA_in_aaa
pA_out_aaa(x1, x2, x3)  =  pA_out_aaa(x3)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:

pA_in_aaa(T5, T5, 1) → pA_out_aaa(T5, T5, 1)

The argument filtering Pi contains the following mapping:
pA_in_aaa(x1, x2, x3)  =  pA_in_aaa
pA_out_aaa(x1, x2, x3)  =  pA_out_aaa(x3)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
P is empty.
The TRS R consists of the following rules:

pA_in_aaa(T5, T5, 1) → pA_out_aaa(T5, T5, 1)

The argument filtering Pi contains the following mapping:
pA_in_aaa(x1, x2, x3)  =  pA_in_aaa
pA_out_aaa(x1, x2, x3)  =  pA_out_aaa(x3)

We have to consider all (P,R,Pi)-chains

(7) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,R,Pi) chain.

(8) YES