(0) Obligation:

Clauses:

q(X) :- ','(not_zero(X), ','(p(X, Y), q(Y))).
p(0, 0).
p(s(X), X).
zero(0).
not_zero(X) :- ','(zero(X), ','(!, failure(a))).
not_zero(X1).
failure(b).

Query: q(g)

(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

qA_in_g(s(T12)) → U1_g(T12, qA_in_g(T12))
U1_g(T12, qA_out_g(T12)) → qA_out_g(s(T12))

Pi is empty.

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

QA_IN_G(s(T12)) → U1_G(T12, qA_in_g(T12))
QA_IN_G(s(T12)) → QA_IN_G(T12)

The TRS R consists of the following rules:

qA_in_g(s(T12)) → U1_g(T12, qA_in_g(T12))
U1_g(T12, qA_out_g(T12)) → qA_out_g(s(T12))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

QA_IN_G(s(T12)) → U1_G(T12, qA_in_g(T12))
QA_IN_G(s(T12)) → QA_IN_G(T12)

The TRS R consists of the following rules:

qA_in_g(s(T12)) → U1_g(T12, qA_in_g(T12))
U1_g(T12, qA_out_g(T12)) → qA_out_g(s(T12))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

QA_IN_G(s(T12)) → QA_IN_G(T12)

The TRS R consists of the following rules:

qA_in_g(s(T12)) → U1_g(T12, qA_in_g(T12))
U1_g(T12, qA_out_g(T12)) → qA_out_g(s(T12))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(7) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

QA_IN_G(s(T12)) → QA_IN_G(T12)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

QA_IN_G(s(T12)) → QA_IN_G(T12)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(11) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • QA_IN_G(s(T12)) → QA_IN_G(T12)
    The graph contains the following edges 1 > 1

(12) YES