(0) Obligation:
Clauses:
minus(X, Y, Z) :- ','(f(X, 0), ','(!, =(Z, 0))).
f(X, Y) :- ','(!, =(X, Y)).
f(X, Y) :- f(X, Y).
=(X, X).
Query: minus(g,g,a)
(1) BuiltinConflictTransformerProof (EQUIVALENT transformation)
Renamed defined predicates conflicting with built-in predicates [PROLOG].
(2) Obligation:
Clauses:
minus(X, Y, Z) :- ','(f(X, 0), ','(!, user_defined_=(Z, 0))).
f(X, Y) :- ','(!, user_defined_=(X, Y)).
f(X, Y) :- f(X, Y).
user_defined_=(X, X).
Query: minus(g,g,a)
(3) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)
Transformed Prolog program to (Pi-)TRS.
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minusA_in_gga(0, T8, 0) → minusA_out_gga(0, T8, 0)
The argument filtering Pi contains the following mapping:
minusA_in_gga(
x1,
x2,
x3) =
minusA_in_gga(
x1,
x2)
0 =
0
minusA_out_gga(
x1,
x2,
x3) =
minusA_out_gga(
x1,
x2,
x3)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:
minusA_in_gga(0, T8, 0) → minusA_out_gga(0, T8, 0)
The argument filtering Pi contains the following mapping:
minusA_in_gga(
x1,
x2,
x3) =
minusA_in_gga(
x1,
x2)
0 =
0
minusA_out_gga(
x1,
x2,
x3) =
minusA_out_gga(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:
minusA_in_gga(0, T8, 0) → minusA_out_gga(0, T8, 0)
The argument filtering Pi contains the following mapping:
minusA_in_gga(
x1,
x2,
x3) =
minusA_in_gga(
x1,
x2)
0 =
0
minusA_out_gga(
x1,
x2,
x3) =
minusA_out_gga(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(7) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,R,Pi) chain.
(8) YES