(0) Obligation:
Clauses:
q(X, Y) :- m(X, Y, Z).
m(X, 0, X).
m(0, Y, 0) :- !.
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(X), X).
Query: q(g,g)
(1) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)
Transformed Prolog program to (Pi-)TRS.
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
qA_in_gg(T5, T6) → U1_gg(T5, T6, mB_in_gga(T5, T6, X5))
mB_in_gga(T9, 0, T9) → mB_out_gga(T9, 0, T9)
mB_in_gga(0, 0, 0) → mB_out_gga(0, 0, 0)
mB_in_gga(s(T15), 0, X29) → U3_gga(T15, X29, mC_in_ga(T15, X29))
mC_in_ga(T22, T22) → mC_out_ga(T22, T22)
mC_in_ga(0, 0) → mC_out_ga(0, 0)
mC_in_ga(s(T28), X62) → U2_ga(T28, X62, mC_in_ga(T28, X62))
U2_ga(T28, X62, mC_out_ga(T28, X62)) → mC_out_ga(s(T28), X62)
U3_gga(T15, X29, mC_out_ga(T15, X29)) → mB_out_gga(s(T15), 0, X29)
mB_in_gga(0, T35, 0) → mB_out_gga(0, T35, 0)
mB_in_gga(s(T44), s(T48), X94) → U4_gga(T44, T48, X94, mB_in_gga(T44, T48, X94))
U4_gga(T44, T48, X94, mB_out_gga(T44, T48, X94)) → mB_out_gga(s(T44), s(T48), X94)
U1_gg(T5, T6, mB_out_gga(T5, T6, X5)) → qA_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
qA_in_gg(
x1,
x2) =
qA_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
mB_in_gga(
x1,
x2,
x3) =
mB_in_gga(
x1,
x2)
0 =
0
mB_out_gga(
x1,
x2,
x3) =
mB_out_gga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3) =
U3_gga(
x1,
x3)
mC_in_ga(
x1,
x2) =
mC_in_ga(
x1)
mC_out_ga(
x1,
x2) =
mC_out_ga(
x1,
x2)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
qA_out_gg(
x1,
x2) =
qA_out_gg(
x1,
x2)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
QA_IN_GG(T5, T6) → U1_GG(T5, T6, mB_in_gga(T5, T6, X5))
QA_IN_GG(T5, T6) → MB_IN_GGA(T5, T6, X5)
MB_IN_GGA(s(T15), 0, X29) → U3_GGA(T15, X29, mC_in_ga(T15, X29))
MB_IN_GGA(s(T15), 0, X29) → MC_IN_GA(T15, X29)
MC_IN_GA(s(T28), X62) → U2_GA(T28, X62, mC_in_ga(T28, X62))
MC_IN_GA(s(T28), X62) → MC_IN_GA(T28, X62)
MB_IN_GGA(s(T44), s(T48), X94) → U4_GGA(T44, T48, X94, mB_in_gga(T44, T48, X94))
MB_IN_GGA(s(T44), s(T48), X94) → MB_IN_GGA(T44, T48, X94)
The TRS R consists of the following rules:
qA_in_gg(T5, T6) → U1_gg(T5, T6, mB_in_gga(T5, T6, X5))
mB_in_gga(T9, 0, T9) → mB_out_gga(T9, 0, T9)
mB_in_gga(0, 0, 0) → mB_out_gga(0, 0, 0)
mB_in_gga(s(T15), 0, X29) → U3_gga(T15, X29, mC_in_ga(T15, X29))
mC_in_ga(T22, T22) → mC_out_ga(T22, T22)
mC_in_ga(0, 0) → mC_out_ga(0, 0)
mC_in_ga(s(T28), X62) → U2_ga(T28, X62, mC_in_ga(T28, X62))
U2_ga(T28, X62, mC_out_ga(T28, X62)) → mC_out_ga(s(T28), X62)
U3_gga(T15, X29, mC_out_ga(T15, X29)) → mB_out_gga(s(T15), 0, X29)
mB_in_gga(0, T35, 0) → mB_out_gga(0, T35, 0)
mB_in_gga(s(T44), s(T48), X94) → U4_gga(T44, T48, X94, mB_in_gga(T44, T48, X94))
U4_gga(T44, T48, X94, mB_out_gga(T44, T48, X94)) → mB_out_gga(s(T44), s(T48), X94)
U1_gg(T5, T6, mB_out_gga(T5, T6, X5)) → qA_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
qA_in_gg(
x1,
x2) =
qA_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
mB_in_gga(
x1,
x2,
x3) =
mB_in_gga(
x1,
x2)
0 =
0
mB_out_gga(
x1,
x2,
x3) =
mB_out_gga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3) =
U3_gga(
x1,
x3)
mC_in_ga(
x1,
x2) =
mC_in_ga(
x1)
mC_out_ga(
x1,
x2) =
mC_out_ga(
x1,
x2)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
qA_out_gg(
x1,
x2) =
qA_out_gg(
x1,
x2)
QA_IN_GG(
x1,
x2) =
QA_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x2,
x3)
MB_IN_GGA(
x1,
x2,
x3) =
MB_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3) =
U3_GGA(
x1,
x3)
MC_IN_GA(
x1,
x2) =
MC_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
QA_IN_GG(T5, T6) → U1_GG(T5, T6, mB_in_gga(T5, T6, X5))
QA_IN_GG(T5, T6) → MB_IN_GGA(T5, T6, X5)
MB_IN_GGA(s(T15), 0, X29) → U3_GGA(T15, X29, mC_in_ga(T15, X29))
MB_IN_GGA(s(T15), 0, X29) → MC_IN_GA(T15, X29)
MC_IN_GA(s(T28), X62) → U2_GA(T28, X62, mC_in_ga(T28, X62))
MC_IN_GA(s(T28), X62) → MC_IN_GA(T28, X62)
MB_IN_GGA(s(T44), s(T48), X94) → U4_GGA(T44, T48, X94, mB_in_gga(T44, T48, X94))
MB_IN_GGA(s(T44), s(T48), X94) → MB_IN_GGA(T44, T48, X94)
The TRS R consists of the following rules:
qA_in_gg(T5, T6) → U1_gg(T5, T6, mB_in_gga(T5, T6, X5))
mB_in_gga(T9, 0, T9) → mB_out_gga(T9, 0, T9)
mB_in_gga(0, 0, 0) → mB_out_gga(0, 0, 0)
mB_in_gga(s(T15), 0, X29) → U3_gga(T15, X29, mC_in_ga(T15, X29))
mC_in_ga(T22, T22) → mC_out_ga(T22, T22)
mC_in_ga(0, 0) → mC_out_ga(0, 0)
mC_in_ga(s(T28), X62) → U2_ga(T28, X62, mC_in_ga(T28, X62))
U2_ga(T28, X62, mC_out_ga(T28, X62)) → mC_out_ga(s(T28), X62)
U3_gga(T15, X29, mC_out_ga(T15, X29)) → mB_out_gga(s(T15), 0, X29)
mB_in_gga(0, T35, 0) → mB_out_gga(0, T35, 0)
mB_in_gga(s(T44), s(T48), X94) → U4_gga(T44, T48, X94, mB_in_gga(T44, T48, X94))
U4_gga(T44, T48, X94, mB_out_gga(T44, T48, X94)) → mB_out_gga(s(T44), s(T48), X94)
U1_gg(T5, T6, mB_out_gga(T5, T6, X5)) → qA_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
qA_in_gg(
x1,
x2) =
qA_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
mB_in_gga(
x1,
x2,
x3) =
mB_in_gga(
x1,
x2)
0 =
0
mB_out_gga(
x1,
x2,
x3) =
mB_out_gga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3) =
U3_gga(
x1,
x3)
mC_in_ga(
x1,
x2) =
mC_in_ga(
x1)
mC_out_ga(
x1,
x2) =
mC_out_ga(
x1,
x2)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
qA_out_gg(
x1,
x2) =
qA_out_gg(
x1,
x2)
QA_IN_GG(
x1,
x2) =
QA_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x2,
x3)
MB_IN_GGA(
x1,
x2,
x3) =
MB_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3) =
U3_GGA(
x1,
x3)
MC_IN_GA(
x1,
x2) =
MC_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MC_IN_GA(s(T28), X62) → MC_IN_GA(T28, X62)
The TRS R consists of the following rules:
qA_in_gg(T5, T6) → U1_gg(T5, T6, mB_in_gga(T5, T6, X5))
mB_in_gga(T9, 0, T9) → mB_out_gga(T9, 0, T9)
mB_in_gga(0, 0, 0) → mB_out_gga(0, 0, 0)
mB_in_gga(s(T15), 0, X29) → U3_gga(T15, X29, mC_in_ga(T15, X29))
mC_in_ga(T22, T22) → mC_out_ga(T22, T22)
mC_in_ga(0, 0) → mC_out_ga(0, 0)
mC_in_ga(s(T28), X62) → U2_ga(T28, X62, mC_in_ga(T28, X62))
U2_ga(T28, X62, mC_out_ga(T28, X62)) → mC_out_ga(s(T28), X62)
U3_gga(T15, X29, mC_out_ga(T15, X29)) → mB_out_gga(s(T15), 0, X29)
mB_in_gga(0, T35, 0) → mB_out_gga(0, T35, 0)
mB_in_gga(s(T44), s(T48), X94) → U4_gga(T44, T48, X94, mB_in_gga(T44, T48, X94))
U4_gga(T44, T48, X94, mB_out_gga(T44, T48, X94)) → mB_out_gga(s(T44), s(T48), X94)
U1_gg(T5, T6, mB_out_gga(T5, T6, X5)) → qA_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
qA_in_gg(
x1,
x2) =
qA_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
mB_in_gga(
x1,
x2,
x3) =
mB_in_gga(
x1,
x2)
0 =
0
mB_out_gga(
x1,
x2,
x3) =
mB_out_gga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3) =
U3_gga(
x1,
x3)
mC_in_ga(
x1,
x2) =
mC_in_ga(
x1)
mC_out_ga(
x1,
x2) =
mC_out_ga(
x1,
x2)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
qA_out_gg(
x1,
x2) =
qA_out_gg(
x1,
x2)
MC_IN_GA(
x1,
x2) =
MC_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MC_IN_GA(s(T28), X62) → MC_IN_GA(T28, X62)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
MC_IN_GA(
x1,
x2) =
MC_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MC_IN_GA(s(T28)) → MC_IN_GA(T28)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MC_IN_GA(s(T28)) → MC_IN_GA(T28)
The graph contains the following edges 1 > 1
(13) YES
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MB_IN_GGA(s(T44), s(T48), X94) → MB_IN_GGA(T44, T48, X94)
The TRS R consists of the following rules:
qA_in_gg(T5, T6) → U1_gg(T5, T6, mB_in_gga(T5, T6, X5))
mB_in_gga(T9, 0, T9) → mB_out_gga(T9, 0, T9)
mB_in_gga(0, 0, 0) → mB_out_gga(0, 0, 0)
mB_in_gga(s(T15), 0, X29) → U3_gga(T15, X29, mC_in_ga(T15, X29))
mC_in_ga(T22, T22) → mC_out_ga(T22, T22)
mC_in_ga(0, 0) → mC_out_ga(0, 0)
mC_in_ga(s(T28), X62) → U2_ga(T28, X62, mC_in_ga(T28, X62))
U2_ga(T28, X62, mC_out_ga(T28, X62)) → mC_out_ga(s(T28), X62)
U3_gga(T15, X29, mC_out_ga(T15, X29)) → mB_out_gga(s(T15), 0, X29)
mB_in_gga(0, T35, 0) → mB_out_gga(0, T35, 0)
mB_in_gga(s(T44), s(T48), X94) → U4_gga(T44, T48, X94, mB_in_gga(T44, T48, X94))
U4_gga(T44, T48, X94, mB_out_gga(T44, T48, X94)) → mB_out_gga(s(T44), s(T48), X94)
U1_gg(T5, T6, mB_out_gga(T5, T6, X5)) → qA_out_gg(T5, T6)
The argument filtering Pi contains the following mapping:
qA_in_gg(
x1,
x2) =
qA_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
mB_in_gga(
x1,
x2,
x3) =
mB_in_gga(
x1,
x2)
0 =
0
mB_out_gga(
x1,
x2,
x3) =
mB_out_gga(
x1,
x2,
x3)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3) =
U3_gga(
x1,
x3)
mC_in_ga(
x1,
x2) =
mC_in_ga(
x1)
mC_out_ga(
x1,
x2) =
mC_out_ga(
x1,
x2)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
qA_out_gg(
x1,
x2) =
qA_out_gg(
x1,
x2)
MB_IN_GGA(
x1,
x2,
x3) =
MB_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MB_IN_GGA(s(T44), s(T48), X94) → MB_IN_GGA(T44, T48, X94)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
MB_IN_GGA(
x1,
x2,
x3) =
MB_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MB_IN_GGA(s(T44), s(T48)) → MB_IN_GGA(T44, T48)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MB_IN_GGA(s(T44), s(T48)) → MB_IN_GGA(T44, T48)
The graph contains the following edges 1 > 1, 2 > 2
(20) YES