(0) Obligation:

Clauses:

m(X, 0, Z) :- ','(!, =(Z, X)).
m(0, Y, Z) :- ','(!, =(Z, 0)).
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(0), 0).
p(s(s(X)), s(Y)) :- p(s(X), Y).
=(X, X).

Query: m(g,g,a)

(1) BuiltinConflictTransformerProof (EQUIVALENT transformation)

Renamed defined predicates conflicting with built-in predicates [PROLOG].

(2) Obligation:

Clauses:

m(X, 0, Z) :- ','(!, user_defined_=(Z, X)).
m(0, Y, Z) :- ','(!, user_defined_=(Z, 0)).
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(0), 0).
p(s(s(X)), s(Y)) :- p(s(X), Y).
user_defined_=(X, X).

Query: m(g,g,a)

(3) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

mA_in_gga(T11, 0, T11) → mA_out_gga(T11, 0, T11)
mA_in_gga(0, T14, 0) → mA_out_gga(0, T14, 0)
mA_in_gga(s(0), T24, T26) → U1_gga(T24, T26, pB_in_gaa(T24, X22, T26))
pB_in_gaa(T24, T27, T26) → U6_gaa(T24, T27, T26, pE_in_ga(T24, T27))
pE_in_ga(s(0), 0) → pE_out_ga(s(0), 0)
pE_in_ga(s(s(T30)), s(X31)) → U4_ga(T30, X31, pD_in_ga(T30, X31))
pD_in_ga(0, 0) → pD_out_ga(0, 0)
pD_in_ga(s(T33), s(X40)) → U3_ga(T33, X40, pD_in_ga(T33, X40))
U3_ga(T33, X40, pD_out_ga(T33, X40)) → pD_out_ga(s(T33), s(X40))
U4_ga(T30, X31, pD_out_ga(T30, X31)) → pE_out_ga(s(s(T30)), s(X31))
U6_gaa(T24, T27, T26, pE_out_ga(T24, T27)) → U7_gaa(T24, T27, T26, mF_in_ga(T27, T26))
mF_in_ga(0, 0) → mF_out_ga(0, 0)
mF_in_ga(T47, 0) → mF_out_ga(T47, 0)
U7_gaa(T24, T27, T26, mF_out_ga(T27, T26)) → pB_out_gaa(T24, T27, T26)
U1_gga(T24, T26, pB_out_gaa(T24, X22, T26)) → mA_out_gga(s(0), T24, T26)
mA_in_gga(s(s(T55)), T24, T26) → U2_gga(T55, T24, T26, pC_in_gagaa(T55, X69, T24, X22, T26))
pC_in_gagaa(T55, T56, T24, X22, T26) → U8_gagaa(T55, T56, T24, X22, T26, pD_in_ga(T55, T56))
U8_gagaa(T55, T56, T24, X22, T26, pD_out_ga(T55, T56)) → U9_gagaa(T55, T56, T24, X22, T26, pH_in_gaga(T24, X22, T56, T26))
pH_in_gaga(T24, T57, T56, T26) → U10_gaga(T24, T57, T56, T26, pG_in_ga(T24, T57))
pG_in_ga(s(0), 0) → pG_out_ga(s(0), 0)
pG_in_ga(s(s(T60)), s(X78)) → U5_ga(T60, X78, pD_in_ga(T60, X78))
U5_ga(T60, X78, pD_out_ga(T60, X78)) → pG_out_ga(s(s(T60)), s(X78))
U10_gaga(T24, T57, T56, T26, pG_out_ga(T24, T57)) → U11_gaga(T24, T57, T56, T26, mA_in_gga(s(T56), T57, T26))
U11_gaga(T24, T57, T56, T26, mA_out_gga(s(T56), T57, T26)) → pH_out_gaga(T24, T57, T56, T26)
U9_gagaa(T55, T56, T24, X22, T26, pH_out_gaga(T24, X22, T56, T26)) → pC_out_gagaa(T55, T56, T24, X22, T26)
U2_gga(T55, T24, T26, pC_out_gagaa(T55, X69, T24, X22, T26)) → mA_out_gga(s(s(T55)), T24, T26)

The argument filtering Pi contains the following mapping:
mA_in_gga(x1, x2, x3)  =  mA_in_gga(x1, x2)
0  =  0
mA_out_gga(x1, x2, x3)  =  mA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
pB_in_gaa(x1, x2, x3)  =  pB_in_gaa(x1)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
pE_in_ga(x1, x2)  =  pE_in_ga(x1)
pE_out_ga(x1, x2)  =  pE_out_ga(x1, x2)
U4_ga(x1, x2, x3)  =  U4_ga(x1, x3)
pD_in_ga(x1, x2)  =  pD_in_ga(x1)
pD_out_ga(x1, x2)  =  pD_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
U7_gaa(x1, x2, x3, x4)  =  U7_gaa(x1, x2, x4)
mF_in_ga(x1, x2)  =  mF_in_ga(x1)
mF_out_ga(x1, x2)  =  mF_out_ga(x1, x2)
pB_out_gaa(x1, x2, x3)  =  pB_out_gaa(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U8_gagaa(x1, x2, x3, x4, x5, x6)  =  U8_gagaa(x1, x3, x6)
U9_gagaa(x1, x2, x3, x4, x5, x6)  =  U9_gagaa(x1, x2, x3, x6)
pH_in_gaga(x1, x2, x3, x4)  =  pH_in_gaga(x1, x3)
U10_gaga(x1, x2, x3, x4, x5)  =  U10_gaga(x1, x3, x5)
pG_in_ga(x1, x2)  =  pG_in_ga(x1)
pG_out_ga(x1, x2)  =  pG_out_ga(x1, x2)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U11_gaga(x1, x2, x3, x4, x5)  =  U11_gaga(x1, x2, x3, x5)
pH_out_gaga(x1, x2, x3, x4)  =  pH_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

MA_IN_GGA(s(0), T24, T26) → U1_GGA(T24, T26, pB_in_gaa(T24, X22, T26))
MA_IN_GGA(s(0), T24, T26) → PB_IN_GAA(T24, X22, T26)
PB_IN_GAA(T24, T27, T26) → U6_GAA(T24, T27, T26, pE_in_ga(T24, T27))
PB_IN_GAA(T24, T27, T26) → PE_IN_GA(T24, T27)
PE_IN_GA(s(s(T30)), s(X31)) → U4_GA(T30, X31, pD_in_ga(T30, X31))
PE_IN_GA(s(s(T30)), s(X31)) → PD_IN_GA(T30, X31)
PD_IN_GA(s(T33), s(X40)) → U3_GA(T33, X40, pD_in_ga(T33, X40))
PD_IN_GA(s(T33), s(X40)) → PD_IN_GA(T33, X40)
U6_GAA(T24, T27, T26, pE_out_ga(T24, T27)) → U7_GAA(T24, T27, T26, mF_in_ga(T27, T26))
U6_GAA(T24, T27, T26, pE_out_ga(T24, T27)) → MF_IN_GA(T27, T26)
MA_IN_GGA(s(s(T55)), T24, T26) → U2_GGA(T55, T24, T26, pC_in_gagaa(T55, X69, T24, X22, T26))
MA_IN_GGA(s(s(T55)), T24, T26) → PC_IN_GAGAA(T55, X69, T24, X22, T26)
PC_IN_GAGAA(T55, T56, T24, X22, T26) → U8_GAGAA(T55, T56, T24, X22, T26, pD_in_ga(T55, T56))
PC_IN_GAGAA(T55, T56, T24, X22, T26) → PD_IN_GA(T55, T56)
U8_GAGAA(T55, T56, T24, X22, T26, pD_out_ga(T55, T56)) → U9_GAGAA(T55, T56, T24, X22, T26, pH_in_gaga(T24, X22, T56, T26))
U8_GAGAA(T55, T56, T24, X22, T26, pD_out_ga(T55, T56)) → PH_IN_GAGA(T24, X22, T56, T26)
PH_IN_GAGA(T24, T57, T56, T26) → U10_GAGA(T24, T57, T56, T26, pG_in_ga(T24, T57))
PH_IN_GAGA(T24, T57, T56, T26) → PG_IN_GA(T24, T57)
PG_IN_GA(s(s(T60)), s(X78)) → U5_GA(T60, X78, pD_in_ga(T60, X78))
PG_IN_GA(s(s(T60)), s(X78)) → PD_IN_GA(T60, X78)
U10_GAGA(T24, T57, T56, T26, pG_out_ga(T24, T57)) → U11_GAGA(T24, T57, T56, T26, mA_in_gga(s(T56), T57, T26))
U10_GAGA(T24, T57, T56, T26, pG_out_ga(T24, T57)) → MA_IN_GGA(s(T56), T57, T26)

The TRS R consists of the following rules:

mA_in_gga(T11, 0, T11) → mA_out_gga(T11, 0, T11)
mA_in_gga(0, T14, 0) → mA_out_gga(0, T14, 0)
mA_in_gga(s(0), T24, T26) → U1_gga(T24, T26, pB_in_gaa(T24, X22, T26))
pB_in_gaa(T24, T27, T26) → U6_gaa(T24, T27, T26, pE_in_ga(T24, T27))
pE_in_ga(s(0), 0) → pE_out_ga(s(0), 0)
pE_in_ga(s(s(T30)), s(X31)) → U4_ga(T30, X31, pD_in_ga(T30, X31))
pD_in_ga(0, 0) → pD_out_ga(0, 0)
pD_in_ga(s(T33), s(X40)) → U3_ga(T33, X40, pD_in_ga(T33, X40))
U3_ga(T33, X40, pD_out_ga(T33, X40)) → pD_out_ga(s(T33), s(X40))
U4_ga(T30, X31, pD_out_ga(T30, X31)) → pE_out_ga(s(s(T30)), s(X31))
U6_gaa(T24, T27, T26, pE_out_ga(T24, T27)) → U7_gaa(T24, T27, T26, mF_in_ga(T27, T26))
mF_in_ga(0, 0) → mF_out_ga(0, 0)
mF_in_ga(T47, 0) → mF_out_ga(T47, 0)
U7_gaa(T24, T27, T26, mF_out_ga(T27, T26)) → pB_out_gaa(T24, T27, T26)
U1_gga(T24, T26, pB_out_gaa(T24, X22, T26)) → mA_out_gga(s(0), T24, T26)
mA_in_gga(s(s(T55)), T24, T26) → U2_gga(T55, T24, T26, pC_in_gagaa(T55, X69, T24, X22, T26))
pC_in_gagaa(T55, T56, T24, X22, T26) → U8_gagaa(T55, T56, T24, X22, T26, pD_in_ga(T55, T56))
U8_gagaa(T55, T56, T24, X22, T26, pD_out_ga(T55, T56)) → U9_gagaa(T55, T56, T24, X22, T26, pH_in_gaga(T24, X22, T56, T26))
pH_in_gaga(T24, T57, T56, T26) → U10_gaga(T24, T57, T56, T26, pG_in_ga(T24, T57))
pG_in_ga(s(0), 0) → pG_out_ga(s(0), 0)
pG_in_ga(s(s(T60)), s(X78)) → U5_ga(T60, X78, pD_in_ga(T60, X78))
U5_ga(T60, X78, pD_out_ga(T60, X78)) → pG_out_ga(s(s(T60)), s(X78))
U10_gaga(T24, T57, T56, T26, pG_out_ga(T24, T57)) → U11_gaga(T24, T57, T56, T26, mA_in_gga(s(T56), T57, T26))
U11_gaga(T24, T57, T56, T26, mA_out_gga(s(T56), T57, T26)) → pH_out_gaga(T24, T57, T56, T26)
U9_gagaa(T55, T56, T24, X22, T26, pH_out_gaga(T24, X22, T56, T26)) → pC_out_gagaa(T55, T56, T24, X22, T26)
U2_gga(T55, T24, T26, pC_out_gagaa(T55, X69, T24, X22, T26)) → mA_out_gga(s(s(T55)), T24, T26)

The argument filtering Pi contains the following mapping:
mA_in_gga(x1, x2, x3)  =  mA_in_gga(x1, x2)
0  =  0
mA_out_gga(x1, x2, x3)  =  mA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
pB_in_gaa(x1, x2, x3)  =  pB_in_gaa(x1)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
pE_in_ga(x1, x2)  =  pE_in_ga(x1)
pE_out_ga(x1, x2)  =  pE_out_ga(x1, x2)
U4_ga(x1, x2, x3)  =  U4_ga(x1, x3)
pD_in_ga(x1, x2)  =  pD_in_ga(x1)
pD_out_ga(x1, x2)  =  pD_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
U7_gaa(x1, x2, x3, x4)  =  U7_gaa(x1, x2, x4)
mF_in_ga(x1, x2)  =  mF_in_ga(x1)
mF_out_ga(x1, x2)  =  mF_out_ga(x1, x2)
pB_out_gaa(x1, x2, x3)  =  pB_out_gaa(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U8_gagaa(x1, x2, x3, x4, x5, x6)  =  U8_gagaa(x1, x3, x6)
U9_gagaa(x1, x2, x3, x4, x5, x6)  =  U9_gagaa(x1, x2, x3, x6)
pH_in_gaga(x1, x2, x3, x4)  =  pH_in_gaga(x1, x3)
U10_gaga(x1, x2, x3, x4, x5)  =  U10_gaga(x1, x3, x5)
pG_in_ga(x1, x2)  =  pG_in_ga(x1)
pG_out_ga(x1, x2)  =  pG_out_ga(x1, x2)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U11_gaga(x1, x2, x3, x4, x5)  =  U11_gaga(x1, x2, x3, x5)
pH_out_gaga(x1, x2, x3, x4)  =  pH_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
MA_IN_GGA(x1, x2, x3)  =  MA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3)  =  U1_GGA(x1, x3)
PB_IN_GAA(x1, x2, x3)  =  PB_IN_GAA(x1)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x1, x4)
PE_IN_GA(x1, x2)  =  PE_IN_GA(x1)
U4_GA(x1, x2, x3)  =  U4_GA(x1, x3)
PD_IN_GA(x1, x2)  =  PD_IN_GA(x1)
U3_GA(x1, x2, x3)  =  U3_GA(x1, x3)
U7_GAA(x1, x2, x3, x4)  =  U7_GAA(x1, x2, x4)
MF_IN_GA(x1, x2)  =  MF_IN_GA(x1)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
PC_IN_GAGAA(x1, x2, x3, x4, x5)  =  PC_IN_GAGAA(x1, x3)
U8_GAGAA(x1, x2, x3, x4, x5, x6)  =  U8_GAGAA(x1, x3, x6)
U9_GAGAA(x1, x2, x3, x4, x5, x6)  =  U9_GAGAA(x1, x2, x3, x6)
PH_IN_GAGA(x1, x2, x3, x4)  =  PH_IN_GAGA(x1, x3)
U10_GAGA(x1, x2, x3, x4, x5)  =  U10_GAGA(x1, x3, x5)
PG_IN_GA(x1, x2)  =  PG_IN_GA(x1)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)
U11_GAGA(x1, x2, x3, x4, x5)  =  U11_GAGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MA_IN_GGA(s(0), T24, T26) → U1_GGA(T24, T26, pB_in_gaa(T24, X22, T26))
MA_IN_GGA(s(0), T24, T26) → PB_IN_GAA(T24, X22, T26)
PB_IN_GAA(T24, T27, T26) → U6_GAA(T24, T27, T26, pE_in_ga(T24, T27))
PB_IN_GAA(T24, T27, T26) → PE_IN_GA(T24, T27)
PE_IN_GA(s(s(T30)), s(X31)) → U4_GA(T30, X31, pD_in_ga(T30, X31))
PE_IN_GA(s(s(T30)), s(X31)) → PD_IN_GA(T30, X31)
PD_IN_GA(s(T33), s(X40)) → U3_GA(T33, X40, pD_in_ga(T33, X40))
PD_IN_GA(s(T33), s(X40)) → PD_IN_GA(T33, X40)
U6_GAA(T24, T27, T26, pE_out_ga(T24, T27)) → U7_GAA(T24, T27, T26, mF_in_ga(T27, T26))
U6_GAA(T24, T27, T26, pE_out_ga(T24, T27)) → MF_IN_GA(T27, T26)
MA_IN_GGA(s(s(T55)), T24, T26) → U2_GGA(T55, T24, T26, pC_in_gagaa(T55, X69, T24, X22, T26))
MA_IN_GGA(s(s(T55)), T24, T26) → PC_IN_GAGAA(T55, X69, T24, X22, T26)
PC_IN_GAGAA(T55, T56, T24, X22, T26) → U8_GAGAA(T55, T56, T24, X22, T26, pD_in_ga(T55, T56))
PC_IN_GAGAA(T55, T56, T24, X22, T26) → PD_IN_GA(T55, T56)
U8_GAGAA(T55, T56, T24, X22, T26, pD_out_ga(T55, T56)) → U9_GAGAA(T55, T56, T24, X22, T26, pH_in_gaga(T24, X22, T56, T26))
U8_GAGAA(T55, T56, T24, X22, T26, pD_out_ga(T55, T56)) → PH_IN_GAGA(T24, X22, T56, T26)
PH_IN_GAGA(T24, T57, T56, T26) → U10_GAGA(T24, T57, T56, T26, pG_in_ga(T24, T57))
PH_IN_GAGA(T24, T57, T56, T26) → PG_IN_GA(T24, T57)
PG_IN_GA(s(s(T60)), s(X78)) → U5_GA(T60, X78, pD_in_ga(T60, X78))
PG_IN_GA(s(s(T60)), s(X78)) → PD_IN_GA(T60, X78)
U10_GAGA(T24, T57, T56, T26, pG_out_ga(T24, T57)) → U11_GAGA(T24, T57, T56, T26, mA_in_gga(s(T56), T57, T26))
U10_GAGA(T24, T57, T56, T26, pG_out_ga(T24, T57)) → MA_IN_GGA(s(T56), T57, T26)

The TRS R consists of the following rules:

mA_in_gga(T11, 0, T11) → mA_out_gga(T11, 0, T11)
mA_in_gga(0, T14, 0) → mA_out_gga(0, T14, 0)
mA_in_gga(s(0), T24, T26) → U1_gga(T24, T26, pB_in_gaa(T24, X22, T26))
pB_in_gaa(T24, T27, T26) → U6_gaa(T24, T27, T26, pE_in_ga(T24, T27))
pE_in_ga(s(0), 0) → pE_out_ga(s(0), 0)
pE_in_ga(s(s(T30)), s(X31)) → U4_ga(T30, X31, pD_in_ga(T30, X31))
pD_in_ga(0, 0) → pD_out_ga(0, 0)
pD_in_ga(s(T33), s(X40)) → U3_ga(T33, X40, pD_in_ga(T33, X40))
U3_ga(T33, X40, pD_out_ga(T33, X40)) → pD_out_ga(s(T33), s(X40))
U4_ga(T30, X31, pD_out_ga(T30, X31)) → pE_out_ga(s(s(T30)), s(X31))
U6_gaa(T24, T27, T26, pE_out_ga(T24, T27)) → U7_gaa(T24, T27, T26, mF_in_ga(T27, T26))
mF_in_ga(0, 0) → mF_out_ga(0, 0)
mF_in_ga(T47, 0) → mF_out_ga(T47, 0)
U7_gaa(T24, T27, T26, mF_out_ga(T27, T26)) → pB_out_gaa(T24, T27, T26)
U1_gga(T24, T26, pB_out_gaa(T24, X22, T26)) → mA_out_gga(s(0), T24, T26)
mA_in_gga(s(s(T55)), T24, T26) → U2_gga(T55, T24, T26, pC_in_gagaa(T55, X69, T24, X22, T26))
pC_in_gagaa(T55, T56, T24, X22, T26) → U8_gagaa(T55, T56, T24, X22, T26, pD_in_ga(T55, T56))
U8_gagaa(T55, T56, T24, X22, T26, pD_out_ga(T55, T56)) → U9_gagaa(T55, T56, T24, X22, T26, pH_in_gaga(T24, X22, T56, T26))
pH_in_gaga(T24, T57, T56, T26) → U10_gaga(T24, T57, T56, T26, pG_in_ga(T24, T57))
pG_in_ga(s(0), 0) → pG_out_ga(s(0), 0)
pG_in_ga(s(s(T60)), s(X78)) → U5_ga(T60, X78, pD_in_ga(T60, X78))
U5_ga(T60, X78, pD_out_ga(T60, X78)) → pG_out_ga(s(s(T60)), s(X78))
U10_gaga(T24, T57, T56, T26, pG_out_ga(T24, T57)) → U11_gaga(T24, T57, T56, T26, mA_in_gga(s(T56), T57, T26))
U11_gaga(T24, T57, T56, T26, mA_out_gga(s(T56), T57, T26)) → pH_out_gaga(T24, T57, T56, T26)
U9_gagaa(T55, T56, T24, X22, T26, pH_out_gaga(T24, X22, T56, T26)) → pC_out_gagaa(T55, T56, T24, X22, T26)
U2_gga(T55, T24, T26, pC_out_gagaa(T55, X69, T24, X22, T26)) → mA_out_gga(s(s(T55)), T24, T26)

The argument filtering Pi contains the following mapping:
mA_in_gga(x1, x2, x3)  =  mA_in_gga(x1, x2)
0  =  0
mA_out_gga(x1, x2, x3)  =  mA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
pB_in_gaa(x1, x2, x3)  =  pB_in_gaa(x1)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
pE_in_ga(x1, x2)  =  pE_in_ga(x1)
pE_out_ga(x1, x2)  =  pE_out_ga(x1, x2)
U4_ga(x1, x2, x3)  =  U4_ga(x1, x3)
pD_in_ga(x1, x2)  =  pD_in_ga(x1)
pD_out_ga(x1, x2)  =  pD_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
U7_gaa(x1, x2, x3, x4)  =  U7_gaa(x1, x2, x4)
mF_in_ga(x1, x2)  =  mF_in_ga(x1)
mF_out_ga(x1, x2)  =  mF_out_ga(x1, x2)
pB_out_gaa(x1, x2, x3)  =  pB_out_gaa(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U8_gagaa(x1, x2, x3, x4, x5, x6)  =  U8_gagaa(x1, x3, x6)
U9_gagaa(x1, x2, x3, x4, x5, x6)  =  U9_gagaa(x1, x2, x3, x6)
pH_in_gaga(x1, x2, x3, x4)  =  pH_in_gaga(x1, x3)
U10_gaga(x1, x2, x3, x4, x5)  =  U10_gaga(x1, x3, x5)
pG_in_ga(x1, x2)  =  pG_in_ga(x1)
pG_out_ga(x1, x2)  =  pG_out_ga(x1, x2)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U11_gaga(x1, x2, x3, x4, x5)  =  U11_gaga(x1, x2, x3, x5)
pH_out_gaga(x1, x2, x3, x4)  =  pH_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
MA_IN_GGA(x1, x2, x3)  =  MA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3)  =  U1_GGA(x1, x3)
PB_IN_GAA(x1, x2, x3)  =  PB_IN_GAA(x1)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x1, x4)
PE_IN_GA(x1, x2)  =  PE_IN_GA(x1)
U4_GA(x1, x2, x3)  =  U4_GA(x1, x3)
PD_IN_GA(x1, x2)  =  PD_IN_GA(x1)
U3_GA(x1, x2, x3)  =  U3_GA(x1, x3)
U7_GAA(x1, x2, x3, x4)  =  U7_GAA(x1, x2, x4)
MF_IN_GA(x1, x2)  =  MF_IN_GA(x1)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
PC_IN_GAGAA(x1, x2, x3, x4, x5)  =  PC_IN_GAGAA(x1, x3)
U8_GAGAA(x1, x2, x3, x4, x5, x6)  =  U8_GAGAA(x1, x3, x6)
U9_GAGAA(x1, x2, x3, x4, x5, x6)  =  U9_GAGAA(x1, x2, x3, x6)
PH_IN_GAGA(x1, x2, x3, x4)  =  PH_IN_GAGA(x1, x3)
U10_GAGA(x1, x2, x3, x4, x5)  =  U10_GAGA(x1, x3, x5)
PG_IN_GA(x1, x2)  =  PG_IN_GA(x1)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)
U11_GAGA(x1, x2, x3, x4, x5)  =  U11_GAGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 16 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PD_IN_GA(s(T33), s(X40)) → PD_IN_GA(T33, X40)

The TRS R consists of the following rules:

mA_in_gga(T11, 0, T11) → mA_out_gga(T11, 0, T11)
mA_in_gga(0, T14, 0) → mA_out_gga(0, T14, 0)
mA_in_gga(s(0), T24, T26) → U1_gga(T24, T26, pB_in_gaa(T24, X22, T26))
pB_in_gaa(T24, T27, T26) → U6_gaa(T24, T27, T26, pE_in_ga(T24, T27))
pE_in_ga(s(0), 0) → pE_out_ga(s(0), 0)
pE_in_ga(s(s(T30)), s(X31)) → U4_ga(T30, X31, pD_in_ga(T30, X31))
pD_in_ga(0, 0) → pD_out_ga(0, 0)
pD_in_ga(s(T33), s(X40)) → U3_ga(T33, X40, pD_in_ga(T33, X40))
U3_ga(T33, X40, pD_out_ga(T33, X40)) → pD_out_ga(s(T33), s(X40))
U4_ga(T30, X31, pD_out_ga(T30, X31)) → pE_out_ga(s(s(T30)), s(X31))
U6_gaa(T24, T27, T26, pE_out_ga(T24, T27)) → U7_gaa(T24, T27, T26, mF_in_ga(T27, T26))
mF_in_ga(0, 0) → mF_out_ga(0, 0)
mF_in_ga(T47, 0) → mF_out_ga(T47, 0)
U7_gaa(T24, T27, T26, mF_out_ga(T27, T26)) → pB_out_gaa(T24, T27, T26)
U1_gga(T24, T26, pB_out_gaa(T24, X22, T26)) → mA_out_gga(s(0), T24, T26)
mA_in_gga(s(s(T55)), T24, T26) → U2_gga(T55, T24, T26, pC_in_gagaa(T55, X69, T24, X22, T26))
pC_in_gagaa(T55, T56, T24, X22, T26) → U8_gagaa(T55, T56, T24, X22, T26, pD_in_ga(T55, T56))
U8_gagaa(T55, T56, T24, X22, T26, pD_out_ga(T55, T56)) → U9_gagaa(T55, T56, T24, X22, T26, pH_in_gaga(T24, X22, T56, T26))
pH_in_gaga(T24, T57, T56, T26) → U10_gaga(T24, T57, T56, T26, pG_in_ga(T24, T57))
pG_in_ga(s(0), 0) → pG_out_ga(s(0), 0)
pG_in_ga(s(s(T60)), s(X78)) → U5_ga(T60, X78, pD_in_ga(T60, X78))
U5_ga(T60, X78, pD_out_ga(T60, X78)) → pG_out_ga(s(s(T60)), s(X78))
U10_gaga(T24, T57, T56, T26, pG_out_ga(T24, T57)) → U11_gaga(T24, T57, T56, T26, mA_in_gga(s(T56), T57, T26))
U11_gaga(T24, T57, T56, T26, mA_out_gga(s(T56), T57, T26)) → pH_out_gaga(T24, T57, T56, T26)
U9_gagaa(T55, T56, T24, X22, T26, pH_out_gaga(T24, X22, T56, T26)) → pC_out_gagaa(T55, T56, T24, X22, T26)
U2_gga(T55, T24, T26, pC_out_gagaa(T55, X69, T24, X22, T26)) → mA_out_gga(s(s(T55)), T24, T26)

The argument filtering Pi contains the following mapping:
mA_in_gga(x1, x2, x3)  =  mA_in_gga(x1, x2)
0  =  0
mA_out_gga(x1, x2, x3)  =  mA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
pB_in_gaa(x1, x2, x3)  =  pB_in_gaa(x1)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
pE_in_ga(x1, x2)  =  pE_in_ga(x1)
pE_out_ga(x1, x2)  =  pE_out_ga(x1, x2)
U4_ga(x1, x2, x3)  =  U4_ga(x1, x3)
pD_in_ga(x1, x2)  =  pD_in_ga(x1)
pD_out_ga(x1, x2)  =  pD_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
U7_gaa(x1, x2, x3, x4)  =  U7_gaa(x1, x2, x4)
mF_in_ga(x1, x2)  =  mF_in_ga(x1)
mF_out_ga(x1, x2)  =  mF_out_ga(x1, x2)
pB_out_gaa(x1, x2, x3)  =  pB_out_gaa(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U8_gagaa(x1, x2, x3, x4, x5, x6)  =  U8_gagaa(x1, x3, x6)
U9_gagaa(x1, x2, x3, x4, x5, x6)  =  U9_gagaa(x1, x2, x3, x6)
pH_in_gaga(x1, x2, x3, x4)  =  pH_in_gaga(x1, x3)
U10_gaga(x1, x2, x3, x4, x5)  =  U10_gaga(x1, x3, x5)
pG_in_ga(x1, x2)  =  pG_in_ga(x1)
pG_out_ga(x1, x2)  =  pG_out_ga(x1, x2)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U11_gaga(x1, x2, x3, x4, x5)  =  U11_gaga(x1, x2, x3, x5)
pH_out_gaga(x1, x2, x3, x4)  =  pH_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
PD_IN_GA(x1, x2)  =  PD_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PD_IN_GA(s(T33), s(X40)) → PD_IN_GA(T33, X40)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
PD_IN_GA(x1, x2)  =  PD_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PD_IN_GA(s(T33)) → PD_IN_GA(T33)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • PD_IN_GA(s(T33)) → PD_IN_GA(T33)
    The graph contains the following edges 1 > 1

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MA_IN_GGA(s(s(T55)), T24, T26) → PC_IN_GAGAA(T55, X69, T24, X22, T26)
PC_IN_GAGAA(T55, T56, T24, X22, T26) → U8_GAGAA(T55, T56, T24, X22, T26, pD_in_ga(T55, T56))
U8_GAGAA(T55, T56, T24, X22, T26, pD_out_ga(T55, T56)) → PH_IN_GAGA(T24, X22, T56, T26)
PH_IN_GAGA(T24, T57, T56, T26) → U10_GAGA(T24, T57, T56, T26, pG_in_ga(T24, T57))
U10_GAGA(T24, T57, T56, T26, pG_out_ga(T24, T57)) → MA_IN_GGA(s(T56), T57, T26)

The TRS R consists of the following rules:

mA_in_gga(T11, 0, T11) → mA_out_gga(T11, 0, T11)
mA_in_gga(0, T14, 0) → mA_out_gga(0, T14, 0)
mA_in_gga(s(0), T24, T26) → U1_gga(T24, T26, pB_in_gaa(T24, X22, T26))
pB_in_gaa(T24, T27, T26) → U6_gaa(T24, T27, T26, pE_in_ga(T24, T27))
pE_in_ga(s(0), 0) → pE_out_ga(s(0), 0)
pE_in_ga(s(s(T30)), s(X31)) → U4_ga(T30, X31, pD_in_ga(T30, X31))
pD_in_ga(0, 0) → pD_out_ga(0, 0)
pD_in_ga(s(T33), s(X40)) → U3_ga(T33, X40, pD_in_ga(T33, X40))
U3_ga(T33, X40, pD_out_ga(T33, X40)) → pD_out_ga(s(T33), s(X40))
U4_ga(T30, X31, pD_out_ga(T30, X31)) → pE_out_ga(s(s(T30)), s(X31))
U6_gaa(T24, T27, T26, pE_out_ga(T24, T27)) → U7_gaa(T24, T27, T26, mF_in_ga(T27, T26))
mF_in_ga(0, 0) → mF_out_ga(0, 0)
mF_in_ga(T47, 0) → mF_out_ga(T47, 0)
U7_gaa(T24, T27, T26, mF_out_ga(T27, T26)) → pB_out_gaa(T24, T27, T26)
U1_gga(T24, T26, pB_out_gaa(T24, X22, T26)) → mA_out_gga(s(0), T24, T26)
mA_in_gga(s(s(T55)), T24, T26) → U2_gga(T55, T24, T26, pC_in_gagaa(T55, X69, T24, X22, T26))
pC_in_gagaa(T55, T56, T24, X22, T26) → U8_gagaa(T55, T56, T24, X22, T26, pD_in_ga(T55, T56))
U8_gagaa(T55, T56, T24, X22, T26, pD_out_ga(T55, T56)) → U9_gagaa(T55, T56, T24, X22, T26, pH_in_gaga(T24, X22, T56, T26))
pH_in_gaga(T24, T57, T56, T26) → U10_gaga(T24, T57, T56, T26, pG_in_ga(T24, T57))
pG_in_ga(s(0), 0) → pG_out_ga(s(0), 0)
pG_in_ga(s(s(T60)), s(X78)) → U5_ga(T60, X78, pD_in_ga(T60, X78))
U5_ga(T60, X78, pD_out_ga(T60, X78)) → pG_out_ga(s(s(T60)), s(X78))
U10_gaga(T24, T57, T56, T26, pG_out_ga(T24, T57)) → U11_gaga(T24, T57, T56, T26, mA_in_gga(s(T56), T57, T26))
U11_gaga(T24, T57, T56, T26, mA_out_gga(s(T56), T57, T26)) → pH_out_gaga(T24, T57, T56, T26)
U9_gagaa(T55, T56, T24, X22, T26, pH_out_gaga(T24, X22, T56, T26)) → pC_out_gagaa(T55, T56, T24, X22, T26)
U2_gga(T55, T24, T26, pC_out_gagaa(T55, X69, T24, X22, T26)) → mA_out_gga(s(s(T55)), T24, T26)

The argument filtering Pi contains the following mapping:
mA_in_gga(x1, x2, x3)  =  mA_in_gga(x1, x2)
0  =  0
mA_out_gga(x1, x2, x3)  =  mA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
pB_in_gaa(x1, x2, x3)  =  pB_in_gaa(x1)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
pE_in_ga(x1, x2)  =  pE_in_ga(x1)
pE_out_ga(x1, x2)  =  pE_out_ga(x1, x2)
U4_ga(x1, x2, x3)  =  U4_ga(x1, x3)
pD_in_ga(x1, x2)  =  pD_in_ga(x1)
pD_out_ga(x1, x2)  =  pD_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
U7_gaa(x1, x2, x3, x4)  =  U7_gaa(x1, x2, x4)
mF_in_ga(x1, x2)  =  mF_in_ga(x1)
mF_out_ga(x1, x2)  =  mF_out_ga(x1, x2)
pB_out_gaa(x1, x2, x3)  =  pB_out_gaa(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
pC_in_gagaa(x1, x2, x3, x4, x5)  =  pC_in_gagaa(x1, x3)
U8_gagaa(x1, x2, x3, x4, x5, x6)  =  U8_gagaa(x1, x3, x6)
U9_gagaa(x1, x2, x3, x4, x5, x6)  =  U9_gagaa(x1, x2, x3, x6)
pH_in_gaga(x1, x2, x3, x4)  =  pH_in_gaga(x1, x3)
U10_gaga(x1, x2, x3, x4, x5)  =  U10_gaga(x1, x3, x5)
pG_in_ga(x1, x2)  =  pG_in_ga(x1)
pG_out_ga(x1, x2)  =  pG_out_ga(x1, x2)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U11_gaga(x1, x2, x3, x4, x5)  =  U11_gaga(x1, x2, x3, x5)
pH_out_gaga(x1, x2, x3, x4)  =  pH_out_gaga(x1, x2, x3, x4)
pC_out_gagaa(x1, x2, x3, x4, x5)  =  pC_out_gagaa(x1, x2, x3, x4, x5)
MA_IN_GGA(x1, x2, x3)  =  MA_IN_GGA(x1, x2)
PC_IN_GAGAA(x1, x2, x3, x4, x5)  =  PC_IN_GAGAA(x1, x3)
U8_GAGAA(x1, x2, x3, x4, x5, x6)  =  U8_GAGAA(x1, x3, x6)
PH_IN_GAGA(x1, x2, x3, x4)  =  PH_IN_GAGA(x1, x3)
U10_GAGA(x1, x2, x3, x4, x5)  =  U10_GAGA(x1, x3, x5)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MA_IN_GGA(s(s(T55)), T24, T26) → PC_IN_GAGAA(T55, X69, T24, X22, T26)
PC_IN_GAGAA(T55, T56, T24, X22, T26) → U8_GAGAA(T55, T56, T24, X22, T26, pD_in_ga(T55, T56))
U8_GAGAA(T55, T56, T24, X22, T26, pD_out_ga(T55, T56)) → PH_IN_GAGA(T24, X22, T56, T26)
PH_IN_GAGA(T24, T57, T56, T26) → U10_GAGA(T24, T57, T56, T26, pG_in_ga(T24, T57))
U10_GAGA(T24, T57, T56, T26, pG_out_ga(T24, T57)) → MA_IN_GGA(s(T56), T57, T26)

The TRS R consists of the following rules:

pD_in_ga(0, 0) → pD_out_ga(0, 0)
pD_in_ga(s(T33), s(X40)) → U3_ga(T33, X40, pD_in_ga(T33, X40))
pG_in_ga(s(0), 0) → pG_out_ga(s(0), 0)
pG_in_ga(s(s(T60)), s(X78)) → U5_ga(T60, X78, pD_in_ga(T60, X78))
U3_ga(T33, X40, pD_out_ga(T33, X40)) → pD_out_ga(s(T33), s(X40))
U5_ga(T60, X78, pD_out_ga(T60, X78)) → pG_out_ga(s(s(T60)), s(X78))

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
pD_in_ga(x1, x2)  =  pD_in_ga(x1)
pD_out_ga(x1, x2)  =  pD_out_ga(x1, x2)
U3_ga(x1, x2, x3)  =  U3_ga(x1, x3)
pG_in_ga(x1, x2)  =  pG_in_ga(x1)
pG_out_ga(x1, x2)  =  pG_out_ga(x1, x2)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
MA_IN_GGA(x1, x2, x3)  =  MA_IN_GGA(x1, x2)
PC_IN_GAGAA(x1, x2, x3, x4, x5)  =  PC_IN_GAGAA(x1, x3)
U8_GAGAA(x1, x2, x3, x4, x5, x6)  =  U8_GAGAA(x1, x3, x6)
PH_IN_GAGA(x1, x2, x3, x4)  =  PH_IN_GAGA(x1, x3)
U10_GAGA(x1, x2, x3, x4, x5)  =  U10_GAGA(x1, x3, x5)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MA_IN_GGA(s(s(T55)), T24) → PC_IN_GAGAA(T55, T24)
PC_IN_GAGAA(T55, T24) → U8_GAGAA(T55, T24, pD_in_ga(T55))
U8_GAGAA(T55, T24, pD_out_ga(T55, T56)) → PH_IN_GAGA(T24, T56)
PH_IN_GAGA(T24, T56) → U10_GAGA(T24, T56, pG_in_ga(T24))
U10_GAGA(T24, T56, pG_out_ga(T24, T57)) → MA_IN_GGA(s(T56), T57)

The TRS R consists of the following rules:

pD_in_ga(0) → pD_out_ga(0, 0)
pD_in_ga(s(T33)) → U3_ga(T33, pD_in_ga(T33))
pG_in_ga(s(0)) → pG_out_ga(s(0), 0)
pG_in_ga(s(s(T60))) → U5_ga(T60, pD_in_ga(T60))
U3_ga(T33, pD_out_ga(T33, X40)) → pD_out_ga(s(T33), s(X40))
U5_ga(T60, pD_out_ga(T60, X78)) → pG_out_ga(s(s(T60)), s(X78))

The set Q consists of the following terms:

pD_in_ga(x0)
pG_in_ga(x0)
U3_ga(x0, x1)
U5_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


MA_IN_GGA(s(s(T55)), T24) → PC_IN_GAGAA(T55, T24)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(MA_IN_GGA(x1, x2)) = x1   
POL(PC_IN_GAGAA(x1, x2)) = 1 + x1   
POL(PH_IN_GAGA(x1, x2)) = 1 + x2   
POL(U10_GAGA(x1, x2, x3)) = 1 + x2   
POL(U3_ga(x1, x2)) = 1 + x2   
POL(U5_ga(x1, x2)) = 0   
POL(U8_GAGAA(x1, x2, x3)) = 1 + x3   
POL(pD_in_ga(x1)) = x1   
POL(pD_out_ga(x1, x2)) = x2   
POL(pG_in_ga(x1)) = 0   
POL(pG_out_ga(x1, x2)) = 0   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

pD_in_ga(0) → pD_out_ga(0, 0)
pD_in_ga(s(T33)) → U3_ga(T33, pD_in_ga(T33))
U3_ga(T33, pD_out_ga(T33, X40)) → pD_out_ga(s(T33), s(X40))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PC_IN_GAGAA(T55, T24) → U8_GAGAA(T55, T24, pD_in_ga(T55))
U8_GAGAA(T55, T24, pD_out_ga(T55, T56)) → PH_IN_GAGA(T24, T56)
PH_IN_GAGA(T24, T56) → U10_GAGA(T24, T56, pG_in_ga(T24))
U10_GAGA(T24, T56, pG_out_ga(T24, T57)) → MA_IN_GGA(s(T56), T57)

The TRS R consists of the following rules:

pD_in_ga(0) → pD_out_ga(0, 0)
pD_in_ga(s(T33)) → U3_ga(T33, pD_in_ga(T33))
pG_in_ga(s(0)) → pG_out_ga(s(0), 0)
pG_in_ga(s(s(T60))) → U5_ga(T60, pD_in_ga(T60))
U3_ga(T33, pD_out_ga(T33, X40)) → pD_out_ga(s(T33), s(X40))
U5_ga(T60, pD_out_ga(T60, X78)) → pG_out_ga(s(s(T60)), s(X78))

The set Q consists of the following terms:

pD_in_ga(x0)
pG_in_ga(x0)
U3_ga(x0, x1)
U5_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 4 less nodes.

(24) TRUE