(0) Obligation:

Clauses:

minus(X, Y, Z) :- ','(=(X, 0), ','(!, =(Z, 0))).
minus(X, Y, Z) :- ','(=(Y, 0), ','(!, =(Z, X))).
minus(X, Y, Z) :- ','(=(X, s(A)), ','(=(Y, s(B)), minus(A, B, Z))).
div(X, Y, Z) :- ','(=(Y, 0), ','(!, fail)).
div(X, Y, Z) :- ','(=(X, 0), ','(!, =(Z, 0))).
div(X, Y, Z) :- ','(minus(X, Y, U), ','(div(U, Y, V), =(Z, s(V)))).
=(X, X).

Query: div(g,g,a)

(1) BuiltinConflictTransformerProof (EQUIVALENT transformation)

Renamed defined predicates conflicting with built-in predicates [PROLOG].

(2) Obligation:

Clauses:

minus(X, Y, Z) :- ','(user_defined_=(X, 0), ','(!, user_defined_=(Z, 0))).
minus(X, Y, Z) :- ','(user_defined_=(Y, 0), ','(!, user_defined_=(Z, X))).
minus(X, Y, Z) :- ','(user_defined_=(X, s(A)), ','(user_defined_=(Y, s(B)), minus(A, B, Z))).
div(X, Y, Z) :- ','(user_defined_=(Y, 0), ','(!, fail)).
div(X, Y, Z) :- ','(user_defined_=(X, 0), ','(!, user_defined_=(Z, 0))).
div(X, Y, Z) :- ','(minus(X, Y, U), ','(div(U, Y, V), user_defined_=(Z, s(V)))).
user_defined_=(X, X).

Query: div(g,g,a)

(3) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

divA_in_gga(0, T21, 0) → divA_out_gga(0, T21, 0)
divA_in_gga(T39, T40, T42) → U1_gga(T39, T40, T42, pB_in_ggaaa(T39, T40, X40, X41, T42))
pB_in_ggaaa(T39, T40, T45, X41, T42) → U5_ggaaa(T39, T40, T45, X41, T42, minusD_in_gga(T39, T40, T45))
minusD_in_gga(s(T73), s(T80), X97) → U3_gga(T73, T80, X97, minusC_in_gga(T73, T80, X97))
minusC_in_gga(0, T88, 0) → minusC_out_gga(0, T88, 0)
minusC_in_gga(T103, 0, T103) → minusC_out_gga(T103, 0, T103)
minusC_in_gga(s(T115), s(T122), X182) → U2_gga(T115, T122, X182, minusC_in_gga(T115, T122, X182))
U2_gga(T115, T122, X182, minusC_out_gga(T115, T122, X182)) → minusC_out_gga(s(T115), s(T122), X182)
U3_gga(T73, T80, X97, minusC_out_gga(T73, T80, X97)) → minusD_out_gga(s(T73), s(T80), X97)
U5_ggaaa(T39, T40, T45, X41, T42, minusD_out_gga(T39, T40, T45)) → U6_ggaaa(T39, T40, T45, X41, T42, pI_in_ggaa(T45, T40, X41, T42))
pI_in_ggaa(T45, T40, T127, T42) → U7_ggaa(T45, T40, T127, T42, divE_in_gga(T45, T40, T127))
divE_in_gga(0, T142, 0) → divE_out_gga(0, T142, 0)
divE_in_gga(T152, T153, X265) → U4_gga(T152, T153, X265, pF_in_ggaaa(T152, T153, X263, X264, X265))
pF_in_ggaaa(T152, T153, T156, X264, X265) → U9_ggaaa(T152, T153, T156, X264, X265, minusD_in_gga(T152, T153, T156))
U9_ggaaa(T152, T153, T156, X264, X265, minusD_out_gga(T152, T153, T156)) → U10_ggaaa(T152, T153, T156, X264, X265, pJ_in_ggaa(T156, T153, X264, X265))
pJ_in_ggaa(T156, T153, T161, X265) → U11_ggaa(T156, T153, T161, X265, divE_in_gga(T156, T153, T161))
U11_ggaa(T156, T153, T161, X265, divE_out_gga(T156, T153, T161)) → U12_ggaa(T156, T153, T161, X265, user_defined_=H_in_ag(X265, T161))
user_defined_=H_in_ag(s(T166), T166) → user_defined_=H_out_ag(s(T166), T166)
U12_ggaa(T156, T153, T161, X265, user_defined_=H_out_ag(X265, T161)) → pJ_out_ggaa(T156, T153, T161, X265)
U10_ggaaa(T152, T153, T156, X264, X265, pJ_out_ggaa(T156, T153, X264, X265)) → pF_out_ggaaa(T152, T153, T156, X264, X265)
U4_gga(T152, T153, X265, pF_out_ggaaa(T152, T153, X263, X264, X265)) → divE_out_gga(T152, T153, X265)
U7_ggaa(T45, T40, T127, T42, divE_out_gga(T45, T40, T127)) → U8_ggaa(T45, T40, T127, T42, user_defined_=G_in_ag(T42, T127))
user_defined_=G_in_ag(s(T172), T172) → user_defined_=G_out_ag(s(T172), T172)
U8_ggaa(T45, T40, T127, T42, user_defined_=G_out_ag(T42, T127)) → pI_out_ggaa(T45, T40, T127, T42)
U6_ggaaa(T39, T40, T45, X41, T42, pI_out_ggaa(T45, T40, X41, T42)) → pB_out_ggaaa(T39, T40, T45, X41, T42)
U1_gga(T39, T40, T42, pB_out_ggaaa(T39, T40, X40, X41, T42)) → divA_out_gga(T39, T40, T42)

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaaa(x1, x2, x3, x4, x5)  =  pB_in_ggaaa(x1, x2)
U5_ggaaa(x1, x2, x3, x4, x5, x6)  =  U5_ggaaa(x1, x2, x6)
minusD_in_gga(x1, x2, x3)  =  minusD_in_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusD_out_gga(x1, x2, x3)  =  minusD_out_gga(x1, x2, x3)
U6_ggaaa(x1, x2, x3, x4, x5, x6)  =  U6_ggaaa(x1, x2, x3, x6)
pI_in_ggaa(x1, x2, x3, x4)  =  pI_in_ggaa(x1, x2)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x5)
divE_in_gga(x1, x2, x3)  =  divE_in_gga(x1, x2)
divE_out_gga(x1, x2, x3)  =  divE_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pF_in_ggaaa(x1, x2, x3, x4, x5)  =  pF_in_ggaaa(x1, x2)
U9_ggaaa(x1, x2, x3, x4, x5, x6)  =  U9_ggaaa(x1, x2, x6)
U10_ggaaa(x1, x2, x3, x4, x5, x6)  =  U10_ggaaa(x1, x2, x3, x6)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U11_ggaa(x1, x2, x3, x4, x5)  =  U11_ggaa(x1, x2, x5)
U12_ggaa(x1, x2, x3, x4, x5)  =  U12_ggaa(x1, x2, x3, x5)
user_defined_=H_in_ag(x1, x2)  =  user_defined_=H_in_ag(x2)
user_defined_=H_out_ag(x1, x2)  =  user_defined_=H_out_ag(x1, x2)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
pF_out_ggaaa(x1, x2, x3, x4, x5)  =  pF_out_ggaaa(x1, x2, x3, x4, x5)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x1, x2, x3, x5)
user_defined_=G_in_ag(x1, x2)  =  user_defined_=G_in_ag(x2)
user_defined_=G_out_ag(x1, x2)  =  user_defined_=G_out_ag(x1, x2)
pI_out_ggaa(x1, x2, x3, x4)  =  pI_out_ggaa(x1, x2, x3, x4)
pB_out_ggaaa(x1, x2, x3, x4, x5)  =  pB_out_ggaaa(x1, x2, x3, x4, x5)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(T39, T40, T42) → U1_GGA(T39, T40, T42, pB_in_ggaaa(T39, T40, X40, X41, T42))
DIVA_IN_GGA(T39, T40, T42) → PB_IN_GGAAA(T39, T40, X40, X41, T42)
PB_IN_GGAAA(T39, T40, T45, X41, T42) → U5_GGAAA(T39, T40, T45, X41, T42, minusD_in_gga(T39, T40, T45))
PB_IN_GGAAA(T39, T40, T45, X41, T42) → MINUSD_IN_GGA(T39, T40, T45)
MINUSD_IN_GGA(s(T73), s(T80), X97) → U3_GGA(T73, T80, X97, minusC_in_gga(T73, T80, X97))
MINUSD_IN_GGA(s(T73), s(T80), X97) → MINUSC_IN_GGA(T73, T80, X97)
MINUSC_IN_GGA(s(T115), s(T122), X182) → U2_GGA(T115, T122, X182, minusC_in_gga(T115, T122, X182))
MINUSC_IN_GGA(s(T115), s(T122), X182) → MINUSC_IN_GGA(T115, T122, X182)
U5_GGAAA(T39, T40, T45, X41, T42, minusD_out_gga(T39, T40, T45)) → U6_GGAAA(T39, T40, T45, X41, T42, pI_in_ggaa(T45, T40, X41, T42))
U5_GGAAA(T39, T40, T45, X41, T42, minusD_out_gga(T39, T40, T45)) → PI_IN_GGAA(T45, T40, X41, T42)
PI_IN_GGAA(T45, T40, T127, T42) → U7_GGAA(T45, T40, T127, T42, divE_in_gga(T45, T40, T127))
PI_IN_GGAA(T45, T40, T127, T42) → DIVE_IN_GGA(T45, T40, T127)
DIVE_IN_GGA(T152, T153, X265) → U4_GGA(T152, T153, X265, pF_in_ggaaa(T152, T153, X263, X264, X265))
DIVE_IN_GGA(T152, T153, X265) → PF_IN_GGAAA(T152, T153, X263, X264, X265)
PF_IN_GGAAA(T152, T153, T156, X264, X265) → U9_GGAAA(T152, T153, T156, X264, X265, minusD_in_gga(T152, T153, T156))
PF_IN_GGAAA(T152, T153, T156, X264, X265) → MINUSD_IN_GGA(T152, T153, T156)
U9_GGAAA(T152, T153, T156, X264, X265, minusD_out_gga(T152, T153, T156)) → U10_GGAAA(T152, T153, T156, X264, X265, pJ_in_ggaa(T156, T153, X264, X265))
U9_GGAAA(T152, T153, T156, X264, X265, minusD_out_gga(T152, T153, T156)) → PJ_IN_GGAA(T156, T153, X264, X265)
PJ_IN_GGAA(T156, T153, T161, X265) → U11_GGAA(T156, T153, T161, X265, divE_in_gga(T156, T153, T161))
PJ_IN_GGAA(T156, T153, T161, X265) → DIVE_IN_GGA(T156, T153, T161)
U11_GGAA(T156, T153, T161, X265, divE_out_gga(T156, T153, T161)) → U12_GGAA(T156, T153, T161, X265, user_defined_=H_in_ag(X265, T161))
U11_GGAA(T156, T153, T161, X265, divE_out_gga(T156, T153, T161)) → USER_DEFINED_=H_IN_AG(X265, T161)
U7_GGAA(T45, T40, T127, T42, divE_out_gga(T45, T40, T127)) → U8_GGAA(T45, T40, T127, T42, user_defined_=G_in_ag(T42, T127))
U7_GGAA(T45, T40, T127, T42, divE_out_gga(T45, T40, T127)) → USER_DEFINED_=G_IN_AG(T42, T127)

The TRS R consists of the following rules:

divA_in_gga(0, T21, 0) → divA_out_gga(0, T21, 0)
divA_in_gga(T39, T40, T42) → U1_gga(T39, T40, T42, pB_in_ggaaa(T39, T40, X40, X41, T42))
pB_in_ggaaa(T39, T40, T45, X41, T42) → U5_ggaaa(T39, T40, T45, X41, T42, minusD_in_gga(T39, T40, T45))
minusD_in_gga(s(T73), s(T80), X97) → U3_gga(T73, T80, X97, minusC_in_gga(T73, T80, X97))
minusC_in_gga(0, T88, 0) → minusC_out_gga(0, T88, 0)
minusC_in_gga(T103, 0, T103) → minusC_out_gga(T103, 0, T103)
minusC_in_gga(s(T115), s(T122), X182) → U2_gga(T115, T122, X182, minusC_in_gga(T115, T122, X182))
U2_gga(T115, T122, X182, minusC_out_gga(T115, T122, X182)) → minusC_out_gga(s(T115), s(T122), X182)
U3_gga(T73, T80, X97, minusC_out_gga(T73, T80, X97)) → minusD_out_gga(s(T73), s(T80), X97)
U5_ggaaa(T39, T40, T45, X41, T42, minusD_out_gga(T39, T40, T45)) → U6_ggaaa(T39, T40, T45, X41, T42, pI_in_ggaa(T45, T40, X41, T42))
pI_in_ggaa(T45, T40, T127, T42) → U7_ggaa(T45, T40, T127, T42, divE_in_gga(T45, T40, T127))
divE_in_gga(0, T142, 0) → divE_out_gga(0, T142, 0)
divE_in_gga(T152, T153, X265) → U4_gga(T152, T153, X265, pF_in_ggaaa(T152, T153, X263, X264, X265))
pF_in_ggaaa(T152, T153, T156, X264, X265) → U9_ggaaa(T152, T153, T156, X264, X265, minusD_in_gga(T152, T153, T156))
U9_ggaaa(T152, T153, T156, X264, X265, minusD_out_gga(T152, T153, T156)) → U10_ggaaa(T152, T153, T156, X264, X265, pJ_in_ggaa(T156, T153, X264, X265))
pJ_in_ggaa(T156, T153, T161, X265) → U11_ggaa(T156, T153, T161, X265, divE_in_gga(T156, T153, T161))
U11_ggaa(T156, T153, T161, X265, divE_out_gga(T156, T153, T161)) → U12_ggaa(T156, T153, T161, X265, user_defined_=H_in_ag(X265, T161))
user_defined_=H_in_ag(s(T166), T166) → user_defined_=H_out_ag(s(T166), T166)
U12_ggaa(T156, T153, T161, X265, user_defined_=H_out_ag(X265, T161)) → pJ_out_ggaa(T156, T153, T161, X265)
U10_ggaaa(T152, T153, T156, X264, X265, pJ_out_ggaa(T156, T153, X264, X265)) → pF_out_ggaaa(T152, T153, T156, X264, X265)
U4_gga(T152, T153, X265, pF_out_ggaaa(T152, T153, X263, X264, X265)) → divE_out_gga(T152, T153, X265)
U7_ggaa(T45, T40, T127, T42, divE_out_gga(T45, T40, T127)) → U8_ggaa(T45, T40, T127, T42, user_defined_=G_in_ag(T42, T127))
user_defined_=G_in_ag(s(T172), T172) → user_defined_=G_out_ag(s(T172), T172)
U8_ggaa(T45, T40, T127, T42, user_defined_=G_out_ag(T42, T127)) → pI_out_ggaa(T45, T40, T127, T42)
U6_ggaaa(T39, T40, T45, X41, T42, pI_out_ggaa(T45, T40, X41, T42)) → pB_out_ggaaa(T39, T40, T45, X41, T42)
U1_gga(T39, T40, T42, pB_out_ggaaa(T39, T40, X40, X41, T42)) → divA_out_gga(T39, T40, T42)

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaaa(x1, x2, x3, x4, x5)  =  pB_in_ggaaa(x1, x2)
U5_ggaaa(x1, x2, x3, x4, x5, x6)  =  U5_ggaaa(x1, x2, x6)
minusD_in_gga(x1, x2, x3)  =  minusD_in_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusD_out_gga(x1, x2, x3)  =  minusD_out_gga(x1, x2, x3)
U6_ggaaa(x1, x2, x3, x4, x5, x6)  =  U6_ggaaa(x1, x2, x3, x6)
pI_in_ggaa(x1, x2, x3, x4)  =  pI_in_ggaa(x1, x2)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x5)
divE_in_gga(x1, x2, x3)  =  divE_in_gga(x1, x2)
divE_out_gga(x1, x2, x3)  =  divE_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pF_in_ggaaa(x1, x2, x3, x4, x5)  =  pF_in_ggaaa(x1, x2)
U9_ggaaa(x1, x2, x3, x4, x5, x6)  =  U9_ggaaa(x1, x2, x6)
U10_ggaaa(x1, x2, x3, x4, x5, x6)  =  U10_ggaaa(x1, x2, x3, x6)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U11_ggaa(x1, x2, x3, x4, x5)  =  U11_ggaa(x1, x2, x5)
U12_ggaa(x1, x2, x3, x4, x5)  =  U12_ggaa(x1, x2, x3, x5)
user_defined_=H_in_ag(x1, x2)  =  user_defined_=H_in_ag(x2)
user_defined_=H_out_ag(x1, x2)  =  user_defined_=H_out_ag(x1, x2)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
pF_out_ggaaa(x1, x2, x3, x4, x5)  =  pF_out_ggaaa(x1, x2, x3, x4, x5)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x1, x2, x3, x5)
user_defined_=G_in_ag(x1, x2)  =  user_defined_=G_in_ag(x2)
user_defined_=G_out_ag(x1, x2)  =  user_defined_=G_out_ag(x1, x2)
pI_out_ggaa(x1, x2, x3, x4)  =  pI_out_ggaa(x1, x2, x3, x4)
pB_out_ggaaa(x1, x2, x3, x4, x5)  =  pB_out_ggaaa(x1, x2, x3, x4, x5)
DIVA_IN_GGA(x1, x2, x3)  =  DIVA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
PB_IN_GGAAA(x1, x2, x3, x4, x5)  =  PB_IN_GGAAA(x1, x2)
U5_GGAAA(x1, x2, x3, x4, x5, x6)  =  U5_GGAAA(x1, x2, x6)
MINUSD_IN_GGA(x1, x2, x3)  =  MINUSD_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
MINUSC_IN_GGA(x1, x2, x3)  =  MINUSC_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
U6_GGAAA(x1, x2, x3, x4, x5, x6)  =  U6_GGAAA(x1, x2, x3, x6)
PI_IN_GGAA(x1, x2, x3, x4)  =  PI_IN_GGAA(x1, x2)
U7_GGAA(x1, x2, x3, x4, x5)  =  U7_GGAA(x1, x2, x5)
DIVE_IN_GGA(x1, x2, x3)  =  DIVE_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
PF_IN_GGAAA(x1, x2, x3, x4, x5)  =  PF_IN_GGAAA(x1, x2)
U9_GGAAA(x1, x2, x3, x4, x5, x6)  =  U9_GGAAA(x1, x2, x6)
U10_GGAAA(x1, x2, x3, x4, x5, x6)  =  U10_GGAAA(x1, x2, x3, x6)
PJ_IN_GGAA(x1, x2, x3, x4)  =  PJ_IN_GGAA(x1, x2)
U11_GGAA(x1, x2, x3, x4, x5)  =  U11_GGAA(x1, x2, x5)
U12_GGAA(x1, x2, x3, x4, x5)  =  U12_GGAA(x1, x2, x3, x5)
USER_DEFINED_=H_IN_AG(x1, x2)  =  USER_DEFINED_=H_IN_AG(x2)
U8_GGAA(x1, x2, x3, x4, x5)  =  U8_GGAA(x1, x2, x3, x5)
USER_DEFINED_=G_IN_AG(x1, x2)  =  USER_DEFINED_=G_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(T39, T40, T42) → U1_GGA(T39, T40, T42, pB_in_ggaaa(T39, T40, X40, X41, T42))
DIVA_IN_GGA(T39, T40, T42) → PB_IN_GGAAA(T39, T40, X40, X41, T42)
PB_IN_GGAAA(T39, T40, T45, X41, T42) → U5_GGAAA(T39, T40, T45, X41, T42, minusD_in_gga(T39, T40, T45))
PB_IN_GGAAA(T39, T40, T45, X41, T42) → MINUSD_IN_GGA(T39, T40, T45)
MINUSD_IN_GGA(s(T73), s(T80), X97) → U3_GGA(T73, T80, X97, minusC_in_gga(T73, T80, X97))
MINUSD_IN_GGA(s(T73), s(T80), X97) → MINUSC_IN_GGA(T73, T80, X97)
MINUSC_IN_GGA(s(T115), s(T122), X182) → U2_GGA(T115, T122, X182, minusC_in_gga(T115, T122, X182))
MINUSC_IN_GGA(s(T115), s(T122), X182) → MINUSC_IN_GGA(T115, T122, X182)
U5_GGAAA(T39, T40, T45, X41, T42, minusD_out_gga(T39, T40, T45)) → U6_GGAAA(T39, T40, T45, X41, T42, pI_in_ggaa(T45, T40, X41, T42))
U5_GGAAA(T39, T40, T45, X41, T42, minusD_out_gga(T39, T40, T45)) → PI_IN_GGAA(T45, T40, X41, T42)
PI_IN_GGAA(T45, T40, T127, T42) → U7_GGAA(T45, T40, T127, T42, divE_in_gga(T45, T40, T127))
PI_IN_GGAA(T45, T40, T127, T42) → DIVE_IN_GGA(T45, T40, T127)
DIVE_IN_GGA(T152, T153, X265) → U4_GGA(T152, T153, X265, pF_in_ggaaa(T152, T153, X263, X264, X265))
DIVE_IN_GGA(T152, T153, X265) → PF_IN_GGAAA(T152, T153, X263, X264, X265)
PF_IN_GGAAA(T152, T153, T156, X264, X265) → U9_GGAAA(T152, T153, T156, X264, X265, minusD_in_gga(T152, T153, T156))
PF_IN_GGAAA(T152, T153, T156, X264, X265) → MINUSD_IN_GGA(T152, T153, T156)
U9_GGAAA(T152, T153, T156, X264, X265, minusD_out_gga(T152, T153, T156)) → U10_GGAAA(T152, T153, T156, X264, X265, pJ_in_ggaa(T156, T153, X264, X265))
U9_GGAAA(T152, T153, T156, X264, X265, minusD_out_gga(T152, T153, T156)) → PJ_IN_GGAA(T156, T153, X264, X265)
PJ_IN_GGAA(T156, T153, T161, X265) → U11_GGAA(T156, T153, T161, X265, divE_in_gga(T156, T153, T161))
PJ_IN_GGAA(T156, T153, T161, X265) → DIVE_IN_GGA(T156, T153, T161)
U11_GGAA(T156, T153, T161, X265, divE_out_gga(T156, T153, T161)) → U12_GGAA(T156, T153, T161, X265, user_defined_=H_in_ag(X265, T161))
U11_GGAA(T156, T153, T161, X265, divE_out_gga(T156, T153, T161)) → USER_DEFINED_=H_IN_AG(X265, T161)
U7_GGAA(T45, T40, T127, T42, divE_out_gga(T45, T40, T127)) → U8_GGAA(T45, T40, T127, T42, user_defined_=G_in_ag(T42, T127))
U7_GGAA(T45, T40, T127, T42, divE_out_gga(T45, T40, T127)) → USER_DEFINED_=G_IN_AG(T42, T127)

The TRS R consists of the following rules:

divA_in_gga(0, T21, 0) → divA_out_gga(0, T21, 0)
divA_in_gga(T39, T40, T42) → U1_gga(T39, T40, T42, pB_in_ggaaa(T39, T40, X40, X41, T42))
pB_in_ggaaa(T39, T40, T45, X41, T42) → U5_ggaaa(T39, T40, T45, X41, T42, minusD_in_gga(T39, T40, T45))
minusD_in_gga(s(T73), s(T80), X97) → U3_gga(T73, T80, X97, minusC_in_gga(T73, T80, X97))
minusC_in_gga(0, T88, 0) → minusC_out_gga(0, T88, 0)
minusC_in_gga(T103, 0, T103) → minusC_out_gga(T103, 0, T103)
minusC_in_gga(s(T115), s(T122), X182) → U2_gga(T115, T122, X182, minusC_in_gga(T115, T122, X182))
U2_gga(T115, T122, X182, minusC_out_gga(T115, T122, X182)) → minusC_out_gga(s(T115), s(T122), X182)
U3_gga(T73, T80, X97, minusC_out_gga(T73, T80, X97)) → minusD_out_gga(s(T73), s(T80), X97)
U5_ggaaa(T39, T40, T45, X41, T42, minusD_out_gga(T39, T40, T45)) → U6_ggaaa(T39, T40, T45, X41, T42, pI_in_ggaa(T45, T40, X41, T42))
pI_in_ggaa(T45, T40, T127, T42) → U7_ggaa(T45, T40, T127, T42, divE_in_gga(T45, T40, T127))
divE_in_gga(0, T142, 0) → divE_out_gga(0, T142, 0)
divE_in_gga(T152, T153, X265) → U4_gga(T152, T153, X265, pF_in_ggaaa(T152, T153, X263, X264, X265))
pF_in_ggaaa(T152, T153, T156, X264, X265) → U9_ggaaa(T152, T153, T156, X264, X265, minusD_in_gga(T152, T153, T156))
U9_ggaaa(T152, T153, T156, X264, X265, minusD_out_gga(T152, T153, T156)) → U10_ggaaa(T152, T153, T156, X264, X265, pJ_in_ggaa(T156, T153, X264, X265))
pJ_in_ggaa(T156, T153, T161, X265) → U11_ggaa(T156, T153, T161, X265, divE_in_gga(T156, T153, T161))
U11_ggaa(T156, T153, T161, X265, divE_out_gga(T156, T153, T161)) → U12_ggaa(T156, T153, T161, X265, user_defined_=H_in_ag(X265, T161))
user_defined_=H_in_ag(s(T166), T166) → user_defined_=H_out_ag(s(T166), T166)
U12_ggaa(T156, T153, T161, X265, user_defined_=H_out_ag(X265, T161)) → pJ_out_ggaa(T156, T153, T161, X265)
U10_ggaaa(T152, T153, T156, X264, X265, pJ_out_ggaa(T156, T153, X264, X265)) → pF_out_ggaaa(T152, T153, T156, X264, X265)
U4_gga(T152, T153, X265, pF_out_ggaaa(T152, T153, X263, X264, X265)) → divE_out_gga(T152, T153, X265)
U7_ggaa(T45, T40, T127, T42, divE_out_gga(T45, T40, T127)) → U8_ggaa(T45, T40, T127, T42, user_defined_=G_in_ag(T42, T127))
user_defined_=G_in_ag(s(T172), T172) → user_defined_=G_out_ag(s(T172), T172)
U8_ggaa(T45, T40, T127, T42, user_defined_=G_out_ag(T42, T127)) → pI_out_ggaa(T45, T40, T127, T42)
U6_ggaaa(T39, T40, T45, X41, T42, pI_out_ggaa(T45, T40, X41, T42)) → pB_out_ggaaa(T39, T40, T45, X41, T42)
U1_gga(T39, T40, T42, pB_out_ggaaa(T39, T40, X40, X41, T42)) → divA_out_gga(T39, T40, T42)

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaaa(x1, x2, x3, x4, x5)  =  pB_in_ggaaa(x1, x2)
U5_ggaaa(x1, x2, x3, x4, x5, x6)  =  U5_ggaaa(x1, x2, x6)
minusD_in_gga(x1, x2, x3)  =  minusD_in_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusD_out_gga(x1, x2, x3)  =  minusD_out_gga(x1, x2, x3)
U6_ggaaa(x1, x2, x3, x4, x5, x6)  =  U6_ggaaa(x1, x2, x3, x6)
pI_in_ggaa(x1, x2, x3, x4)  =  pI_in_ggaa(x1, x2)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x5)
divE_in_gga(x1, x2, x3)  =  divE_in_gga(x1, x2)
divE_out_gga(x1, x2, x3)  =  divE_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pF_in_ggaaa(x1, x2, x3, x4, x5)  =  pF_in_ggaaa(x1, x2)
U9_ggaaa(x1, x2, x3, x4, x5, x6)  =  U9_ggaaa(x1, x2, x6)
U10_ggaaa(x1, x2, x3, x4, x5, x6)  =  U10_ggaaa(x1, x2, x3, x6)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U11_ggaa(x1, x2, x3, x4, x5)  =  U11_ggaa(x1, x2, x5)
U12_ggaa(x1, x2, x3, x4, x5)  =  U12_ggaa(x1, x2, x3, x5)
user_defined_=H_in_ag(x1, x2)  =  user_defined_=H_in_ag(x2)
user_defined_=H_out_ag(x1, x2)  =  user_defined_=H_out_ag(x1, x2)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
pF_out_ggaaa(x1, x2, x3, x4, x5)  =  pF_out_ggaaa(x1, x2, x3, x4, x5)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x1, x2, x3, x5)
user_defined_=G_in_ag(x1, x2)  =  user_defined_=G_in_ag(x2)
user_defined_=G_out_ag(x1, x2)  =  user_defined_=G_out_ag(x1, x2)
pI_out_ggaa(x1, x2, x3, x4)  =  pI_out_ggaa(x1, x2, x3, x4)
pB_out_ggaaa(x1, x2, x3, x4, x5)  =  pB_out_ggaaa(x1, x2, x3, x4, x5)
DIVA_IN_GGA(x1, x2, x3)  =  DIVA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
PB_IN_GGAAA(x1, x2, x3, x4, x5)  =  PB_IN_GGAAA(x1, x2)
U5_GGAAA(x1, x2, x3, x4, x5, x6)  =  U5_GGAAA(x1, x2, x6)
MINUSD_IN_GGA(x1, x2, x3)  =  MINUSD_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
MINUSC_IN_GGA(x1, x2, x3)  =  MINUSC_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
U6_GGAAA(x1, x2, x3, x4, x5, x6)  =  U6_GGAAA(x1, x2, x3, x6)
PI_IN_GGAA(x1, x2, x3, x4)  =  PI_IN_GGAA(x1, x2)
U7_GGAA(x1, x2, x3, x4, x5)  =  U7_GGAA(x1, x2, x5)
DIVE_IN_GGA(x1, x2, x3)  =  DIVE_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
PF_IN_GGAAA(x1, x2, x3, x4, x5)  =  PF_IN_GGAAA(x1, x2)
U9_GGAAA(x1, x2, x3, x4, x5, x6)  =  U9_GGAAA(x1, x2, x6)
U10_GGAAA(x1, x2, x3, x4, x5, x6)  =  U10_GGAAA(x1, x2, x3, x6)
PJ_IN_GGAA(x1, x2, x3, x4)  =  PJ_IN_GGAA(x1, x2)
U11_GGAA(x1, x2, x3, x4, x5)  =  U11_GGAA(x1, x2, x5)
U12_GGAA(x1, x2, x3, x4, x5)  =  U12_GGAA(x1, x2, x3, x5)
USER_DEFINED_=H_IN_AG(x1, x2)  =  USER_DEFINED_=H_IN_AG(x2)
U8_GGAA(x1, x2, x3, x4, x5)  =  U8_GGAA(x1, x2, x3, x5)
USER_DEFINED_=G_IN_AG(x1, x2)  =  USER_DEFINED_=G_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 19 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSC_IN_GGA(s(T115), s(T122), X182) → MINUSC_IN_GGA(T115, T122, X182)

The TRS R consists of the following rules:

divA_in_gga(0, T21, 0) → divA_out_gga(0, T21, 0)
divA_in_gga(T39, T40, T42) → U1_gga(T39, T40, T42, pB_in_ggaaa(T39, T40, X40, X41, T42))
pB_in_ggaaa(T39, T40, T45, X41, T42) → U5_ggaaa(T39, T40, T45, X41, T42, minusD_in_gga(T39, T40, T45))
minusD_in_gga(s(T73), s(T80), X97) → U3_gga(T73, T80, X97, minusC_in_gga(T73, T80, X97))
minusC_in_gga(0, T88, 0) → minusC_out_gga(0, T88, 0)
minusC_in_gga(T103, 0, T103) → minusC_out_gga(T103, 0, T103)
minusC_in_gga(s(T115), s(T122), X182) → U2_gga(T115, T122, X182, minusC_in_gga(T115, T122, X182))
U2_gga(T115, T122, X182, minusC_out_gga(T115, T122, X182)) → minusC_out_gga(s(T115), s(T122), X182)
U3_gga(T73, T80, X97, minusC_out_gga(T73, T80, X97)) → minusD_out_gga(s(T73), s(T80), X97)
U5_ggaaa(T39, T40, T45, X41, T42, minusD_out_gga(T39, T40, T45)) → U6_ggaaa(T39, T40, T45, X41, T42, pI_in_ggaa(T45, T40, X41, T42))
pI_in_ggaa(T45, T40, T127, T42) → U7_ggaa(T45, T40, T127, T42, divE_in_gga(T45, T40, T127))
divE_in_gga(0, T142, 0) → divE_out_gga(0, T142, 0)
divE_in_gga(T152, T153, X265) → U4_gga(T152, T153, X265, pF_in_ggaaa(T152, T153, X263, X264, X265))
pF_in_ggaaa(T152, T153, T156, X264, X265) → U9_ggaaa(T152, T153, T156, X264, X265, minusD_in_gga(T152, T153, T156))
U9_ggaaa(T152, T153, T156, X264, X265, minusD_out_gga(T152, T153, T156)) → U10_ggaaa(T152, T153, T156, X264, X265, pJ_in_ggaa(T156, T153, X264, X265))
pJ_in_ggaa(T156, T153, T161, X265) → U11_ggaa(T156, T153, T161, X265, divE_in_gga(T156, T153, T161))
U11_ggaa(T156, T153, T161, X265, divE_out_gga(T156, T153, T161)) → U12_ggaa(T156, T153, T161, X265, user_defined_=H_in_ag(X265, T161))
user_defined_=H_in_ag(s(T166), T166) → user_defined_=H_out_ag(s(T166), T166)
U12_ggaa(T156, T153, T161, X265, user_defined_=H_out_ag(X265, T161)) → pJ_out_ggaa(T156, T153, T161, X265)
U10_ggaaa(T152, T153, T156, X264, X265, pJ_out_ggaa(T156, T153, X264, X265)) → pF_out_ggaaa(T152, T153, T156, X264, X265)
U4_gga(T152, T153, X265, pF_out_ggaaa(T152, T153, X263, X264, X265)) → divE_out_gga(T152, T153, X265)
U7_ggaa(T45, T40, T127, T42, divE_out_gga(T45, T40, T127)) → U8_ggaa(T45, T40, T127, T42, user_defined_=G_in_ag(T42, T127))
user_defined_=G_in_ag(s(T172), T172) → user_defined_=G_out_ag(s(T172), T172)
U8_ggaa(T45, T40, T127, T42, user_defined_=G_out_ag(T42, T127)) → pI_out_ggaa(T45, T40, T127, T42)
U6_ggaaa(T39, T40, T45, X41, T42, pI_out_ggaa(T45, T40, X41, T42)) → pB_out_ggaaa(T39, T40, T45, X41, T42)
U1_gga(T39, T40, T42, pB_out_ggaaa(T39, T40, X40, X41, T42)) → divA_out_gga(T39, T40, T42)

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaaa(x1, x2, x3, x4, x5)  =  pB_in_ggaaa(x1, x2)
U5_ggaaa(x1, x2, x3, x4, x5, x6)  =  U5_ggaaa(x1, x2, x6)
minusD_in_gga(x1, x2, x3)  =  minusD_in_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusD_out_gga(x1, x2, x3)  =  minusD_out_gga(x1, x2, x3)
U6_ggaaa(x1, x2, x3, x4, x5, x6)  =  U6_ggaaa(x1, x2, x3, x6)
pI_in_ggaa(x1, x2, x3, x4)  =  pI_in_ggaa(x1, x2)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x5)
divE_in_gga(x1, x2, x3)  =  divE_in_gga(x1, x2)
divE_out_gga(x1, x2, x3)  =  divE_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pF_in_ggaaa(x1, x2, x3, x4, x5)  =  pF_in_ggaaa(x1, x2)
U9_ggaaa(x1, x2, x3, x4, x5, x6)  =  U9_ggaaa(x1, x2, x6)
U10_ggaaa(x1, x2, x3, x4, x5, x6)  =  U10_ggaaa(x1, x2, x3, x6)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U11_ggaa(x1, x2, x3, x4, x5)  =  U11_ggaa(x1, x2, x5)
U12_ggaa(x1, x2, x3, x4, x5)  =  U12_ggaa(x1, x2, x3, x5)
user_defined_=H_in_ag(x1, x2)  =  user_defined_=H_in_ag(x2)
user_defined_=H_out_ag(x1, x2)  =  user_defined_=H_out_ag(x1, x2)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
pF_out_ggaaa(x1, x2, x3, x4, x5)  =  pF_out_ggaaa(x1, x2, x3, x4, x5)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x1, x2, x3, x5)
user_defined_=G_in_ag(x1, x2)  =  user_defined_=G_in_ag(x2)
user_defined_=G_out_ag(x1, x2)  =  user_defined_=G_out_ag(x1, x2)
pI_out_ggaa(x1, x2, x3, x4)  =  pI_out_ggaa(x1, x2, x3, x4)
pB_out_ggaaa(x1, x2, x3, x4, x5)  =  pB_out_ggaaa(x1, x2, x3, x4, x5)
MINUSC_IN_GGA(x1, x2, x3)  =  MINUSC_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSC_IN_GGA(s(T115), s(T122), X182) → MINUSC_IN_GGA(T115, T122, X182)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MINUSC_IN_GGA(x1, x2, x3)  =  MINUSC_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUSC_IN_GGA(s(T115), s(T122)) → MINUSC_IN_GGA(T115, T122)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUSC_IN_GGA(s(T115), s(T122)) → MINUSC_IN_GGA(T115, T122)
    The graph contains the following edges 1 > 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PF_IN_GGAAA(T152, T153, T156, X264, X265) → U9_GGAAA(T152, T153, T156, X264, X265, minusD_in_gga(T152, T153, T156))
U9_GGAAA(T152, T153, T156, X264, X265, minusD_out_gga(T152, T153, T156)) → PJ_IN_GGAA(T156, T153, X264, X265)
PJ_IN_GGAA(T156, T153, T161, X265) → DIVE_IN_GGA(T156, T153, T161)
DIVE_IN_GGA(T152, T153, X265) → PF_IN_GGAAA(T152, T153, X263, X264, X265)

The TRS R consists of the following rules:

divA_in_gga(0, T21, 0) → divA_out_gga(0, T21, 0)
divA_in_gga(T39, T40, T42) → U1_gga(T39, T40, T42, pB_in_ggaaa(T39, T40, X40, X41, T42))
pB_in_ggaaa(T39, T40, T45, X41, T42) → U5_ggaaa(T39, T40, T45, X41, T42, minusD_in_gga(T39, T40, T45))
minusD_in_gga(s(T73), s(T80), X97) → U3_gga(T73, T80, X97, minusC_in_gga(T73, T80, X97))
minusC_in_gga(0, T88, 0) → minusC_out_gga(0, T88, 0)
minusC_in_gga(T103, 0, T103) → minusC_out_gga(T103, 0, T103)
minusC_in_gga(s(T115), s(T122), X182) → U2_gga(T115, T122, X182, minusC_in_gga(T115, T122, X182))
U2_gga(T115, T122, X182, minusC_out_gga(T115, T122, X182)) → minusC_out_gga(s(T115), s(T122), X182)
U3_gga(T73, T80, X97, minusC_out_gga(T73, T80, X97)) → minusD_out_gga(s(T73), s(T80), X97)
U5_ggaaa(T39, T40, T45, X41, T42, minusD_out_gga(T39, T40, T45)) → U6_ggaaa(T39, T40, T45, X41, T42, pI_in_ggaa(T45, T40, X41, T42))
pI_in_ggaa(T45, T40, T127, T42) → U7_ggaa(T45, T40, T127, T42, divE_in_gga(T45, T40, T127))
divE_in_gga(0, T142, 0) → divE_out_gga(0, T142, 0)
divE_in_gga(T152, T153, X265) → U4_gga(T152, T153, X265, pF_in_ggaaa(T152, T153, X263, X264, X265))
pF_in_ggaaa(T152, T153, T156, X264, X265) → U9_ggaaa(T152, T153, T156, X264, X265, minusD_in_gga(T152, T153, T156))
U9_ggaaa(T152, T153, T156, X264, X265, minusD_out_gga(T152, T153, T156)) → U10_ggaaa(T152, T153, T156, X264, X265, pJ_in_ggaa(T156, T153, X264, X265))
pJ_in_ggaa(T156, T153, T161, X265) → U11_ggaa(T156, T153, T161, X265, divE_in_gga(T156, T153, T161))
U11_ggaa(T156, T153, T161, X265, divE_out_gga(T156, T153, T161)) → U12_ggaa(T156, T153, T161, X265, user_defined_=H_in_ag(X265, T161))
user_defined_=H_in_ag(s(T166), T166) → user_defined_=H_out_ag(s(T166), T166)
U12_ggaa(T156, T153, T161, X265, user_defined_=H_out_ag(X265, T161)) → pJ_out_ggaa(T156, T153, T161, X265)
U10_ggaaa(T152, T153, T156, X264, X265, pJ_out_ggaa(T156, T153, X264, X265)) → pF_out_ggaaa(T152, T153, T156, X264, X265)
U4_gga(T152, T153, X265, pF_out_ggaaa(T152, T153, X263, X264, X265)) → divE_out_gga(T152, T153, X265)
U7_ggaa(T45, T40, T127, T42, divE_out_gga(T45, T40, T127)) → U8_ggaa(T45, T40, T127, T42, user_defined_=G_in_ag(T42, T127))
user_defined_=G_in_ag(s(T172), T172) → user_defined_=G_out_ag(s(T172), T172)
U8_ggaa(T45, T40, T127, T42, user_defined_=G_out_ag(T42, T127)) → pI_out_ggaa(T45, T40, T127, T42)
U6_ggaaa(T39, T40, T45, X41, T42, pI_out_ggaa(T45, T40, X41, T42)) → pB_out_ggaaa(T39, T40, T45, X41, T42)
U1_gga(T39, T40, T42, pB_out_ggaaa(T39, T40, X40, X41, T42)) → divA_out_gga(T39, T40, T42)

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaaa(x1, x2, x3, x4, x5)  =  pB_in_ggaaa(x1, x2)
U5_ggaaa(x1, x2, x3, x4, x5, x6)  =  U5_ggaaa(x1, x2, x6)
minusD_in_gga(x1, x2, x3)  =  minusD_in_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusD_out_gga(x1, x2, x3)  =  minusD_out_gga(x1, x2, x3)
U6_ggaaa(x1, x2, x3, x4, x5, x6)  =  U6_ggaaa(x1, x2, x3, x6)
pI_in_ggaa(x1, x2, x3, x4)  =  pI_in_ggaa(x1, x2)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x1, x2, x5)
divE_in_gga(x1, x2, x3)  =  divE_in_gga(x1, x2)
divE_out_gga(x1, x2, x3)  =  divE_out_gga(x1, x2, x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
pF_in_ggaaa(x1, x2, x3, x4, x5)  =  pF_in_ggaaa(x1, x2)
U9_ggaaa(x1, x2, x3, x4, x5, x6)  =  U9_ggaaa(x1, x2, x6)
U10_ggaaa(x1, x2, x3, x4, x5, x6)  =  U10_ggaaa(x1, x2, x3, x6)
pJ_in_ggaa(x1, x2, x3, x4)  =  pJ_in_ggaa(x1, x2)
U11_ggaa(x1, x2, x3, x4, x5)  =  U11_ggaa(x1, x2, x5)
U12_ggaa(x1, x2, x3, x4, x5)  =  U12_ggaa(x1, x2, x3, x5)
user_defined_=H_in_ag(x1, x2)  =  user_defined_=H_in_ag(x2)
user_defined_=H_out_ag(x1, x2)  =  user_defined_=H_out_ag(x1, x2)
pJ_out_ggaa(x1, x2, x3, x4)  =  pJ_out_ggaa(x1, x2, x3, x4)
pF_out_ggaaa(x1, x2, x3, x4, x5)  =  pF_out_ggaaa(x1, x2, x3, x4, x5)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x1, x2, x3, x5)
user_defined_=G_in_ag(x1, x2)  =  user_defined_=G_in_ag(x2)
user_defined_=G_out_ag(x1, x2)  =  user_defined_=G_out_ag(x1, x2)
pI_out_ggaa(x1, x2, x3, x4)  =  pI_out_ggaa(x1, x2, x3, x4)
pB_out_ggaaa(x1, x2, x3, x4, x5)  =  pB_out_ggaaa(x1, x2, x3, x4, x5)
DIVE_IN_GGA(x1, x2, x3)  =  DIVE_IN_GGA(x1, x2)
PF_IN_GGAAA(x1, x2, x3, x4, x5)  =  PF_IN_GGAAA(x1, x2)
U9_GGAAA(x1, x2, x3, x4, x5, x6)  =  U9_GGAAA(x1, x2, x6)
PJ_IN_GGAA(x1, x2, x3, x4)  =  PJ_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

PF_IN_GGAAA(T152, T153, T156, X264, X265) → U9_GGAAA(T152, T153, T156, X264, X265, minusD_in_gga(T152, T153, T156))
U9_GGAAA(T152, T153, T156, X264, X265, minusD_out_gga(T152, T153, T156)) → PJ_IN_GGAA(T156, T153, X264, X265)
PJ_IN_GGAA(T156, T153, T161, X265) → DIVE_IN_GGA(T156, T153, T161)
DIVE_IN_GGA(T152, T153, X265) → PF_IN_GGAAA(T152, T153, X263, X264, X265)

The TRS R consists of the following rules:

minusD_in_gga(s(T73), s(T80), X97) → U3_gga(T73, T80, X97, minusC_in_gga(T73, T80, X97))
U3_gga(T73, T80, X97, minusC_out_gga(T73, T80, X97)) → minusD_out_gga(s(T73), s(T80), X97)
minusC_in_gga(0, T88, 0) → minusC_out_gga(0, T88, 0)
minusC_in_gga(T103, 0, T103) → minusC_out_gga(T103, 0, T103)
minusC_in_gga(s(T115), s(T122), X182) → U2_gga(T115, T122, X182, minusC_in_gga(T115, T122, X182))
U2_gga(T115, T122, X182, minusC_out_gga(T115, T122, X182)) → minusC_out_gga(s(T115), s(T122), X182)

The argument filtering Pi contains the following mapping:
0  =  0
minusD_in_gga(x1, x2, x3)  =  minusD_in_gga(x1, x2)
s(x1)  =  s(x1)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusD_out_gga(x1, x2, x3)  =  minusD_out_gga(x1, x2, x3)
DIVE_IN_GGA(x1, x2, x3)  =  DIVE_IN_GGA(x1, x2)
PF_IN_GGAAA(x1, x2, x3, x4, x5)  =  PF_IN_GGAAA(x1, x2)
U9_GGAAA(x1, x2, x3, x4, x5, x6)  =  U9_GGAAA(x1, x2, x6)
PJ_IN_GGAA(x1, x2, x3, x4)  =  PJ_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PF_IN_GGAAA(T152, T153) → U9_GGAAA(T152, T153, minusD_in_gga(T152, T153))
U9_GGAAA(T152, T153, minusD_out_gga(T152, T153, T156)) → PJ_IN_GGAA(T156, T153)
PJ_IN_GGAA(T156, T153) → DIVE_IN_GGA(T156, T153)
DIVE_IN_GGA(T152, T153) → PF_IN_GGAAA(T152, T153)

The TRS R consists of the following rules:

minusD_in_gga(s(T73), s(T80)) → U3_gga(T73, T80, minusC_in_gga(T73, T80))
U3_gga(T73, T80, minusC_out_gga(T73, T80, X97)) → minusD_out_gga(s(T73), s(T80), X97)
minusC_in_gga(0, T88) → minusC_out_gga(0, T88, 0)
minusC_in_gga(T103, 0) → minusC_out_gga(T103, 0, T103)
minusC_in_gga(s(T115), s(T122)) → U2_gga(T115, T122, minusC_in_gga(T115, T122))
U2_gga(T115, T122, minusC_out_gga(T115, T122, X182)) → minusC_out_gga(s(T115), s(T122), X182)

The set Q consists of the following terms:

minusD_in_gga(x0, x1)
U3_gga(x0, x1, x2)
minusC_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


PF_IN_GGAAA(T152, T153) → U9_GGAAA(T152, T153, minusD_in_gga(T152, T153))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIVE_IN_GGA(x1, x2)) = 1 + x1   
POL(PF_IN_GGAAA(x1, x2)) = 1 + x1   
POL(PJ_IN_GGAA(x1, x2)) = 1 + x1   
POL(U2_gga(x1, x2, x3)) = 1 + x3   
POL(U3_gga(x1, x2, x3)) = x3   
POL(U9_GGAAA(x1, x2, x3)) = x3   
POL(minusC_in_gga(x1, x2)) = 1 + x1   
POL(minusC_out_gga(x1, x2, x3)) = 1 + x3   
POL(minusD_in_gga(x1, x2)) = x1   
POL(minusD_out_gga(x1, x2, x3)) = 1 + x3   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

minusD_in_gga(s(T73), s(T80)) → U3_gga(T73, T80, minusC_in_gga(T73, T80))
minusC_in_gga(0, T88) → minusC_out_gga(0, T88, 0)
minusC_in_gga(T103, 0) → minusC_out_gga(T103, 0, T103)
minusC_in_gga(s(T115), s(T122)) → U2_gga(T115, T122, minusC_in_gga(T115, T122))
U3_gga(T73, T80, minusC_out_gga(T73, T80, X97)) → minusD_out_gga(s(T73), s(T80), X97)
U2_gga(T115, T122, minusC_out_gga(T115, T122, X182)) → minusC_out_gga(s(T115), s(T122), X182)

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U9_GGAAA(T152, T153, minusD_out_gga(T152, T153, T156)) → PJ_IN_GGAA(T156, T153)
PJ_IN_GGAA(T156, T153) → DIVE_IN_GGA(T156, T153)
DIVE_IN_GGA(T152, T153) → PF_IN_GGAAA(T152, T153)

The TRS R consists of the following rules:

minusD_in_gga(s(T73), s(T80)) → U3_gga(T73, T80, minusC_in_gga(T73, T80))
U3_gga(T73, T80, minusC_out_gga(T73, T80, X97)) → minusD_out_gga(s(T73), s(T80), X97)
minusC_in_gga(0, T88) → minusC_out_gga(0, T88, 0)
minusC_in_gga(T103, 0) → minusC_out_gga(T103, 0, T103)
minusC_in_gga(s(T115), s(T122)) → U2_gga(T115, T122, minusC_in_gga(T115, T122))
U2_gga(T115, T122, minusC_out_gga(T115, T122, X182)) → minusC_out_gga(s(T115), s(T122), X182)

The set Q consists of the following terms:

minusD_in_gga(x0, x1)
U3_gga(x0, x1, x2)
minusC_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(24) TRUE