(0) Obligation:

Clauses:

div(X, 0, Z) :- ','(!, fail).
div(0, Y, Z) :- ','(!, =(Z, 0)).
div(X, Y, s(Z)) :- ','(minus(X, Y, U), div(U, Y, Z)).
minus(0, Y, 0).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
=(X, X).

Query: div(g,g,a)

(1) BuiltinConflictTransformerProof (EQUIVALENT transformation)

Renamed defined predicates conflicting with built-in predicates [PROLOG].

(2) Obligation:

Clauses:

div(X, 0, Z) :- ','(!, fail).
div(0, Y, Z) :- ','(!, user_defined_=(Z, 0)).
div(X, Y, s(Z)) :- ','(minus(X, Y, U), div(U, Y, Z)).
minus(0, Y, 0).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
user_defined_=(X, X).

Query: div(g,g,a)

(3) PrologToPiTRSViaGraphTransformerProof (SOUND transformation)

Transformed Prolog program to (Pi-)TRS.

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

divA_in_gga(0, T10, 0) → divA_out_gga(0, T10, 0)
divA_in_gga(s(T29), s(T30), s(T22)) → U1_gga(T29, T30, T22, pB_in_ggaa(T29, T30, X32, T22))
pB_in_ggaa(T29, T30, T33, T22) → U3_ggaa(T29, T30, T33, T22, minusC_in_gga(T29, T30, T33))
minusC_in_gga(0, T40, 0) → minusC_out_gga(0, T40, 0)
minusC_in_gga(T45, 0, T45) → minusC_out_gga(T45, 0, T45)
minusC_in_gga(s(T50), s(T51), X58) → U2_gga(T50, T51, X58, minusC_in_gga(T50, T51, X58))
U2_gga(T50, T51, X58, minusC_out_gga(T50, T51, X58)) → minusC_out_gga(s(T50), s(T51), X58)
U3_ggaa(T29, T30, T33, T22, minusC_out_gga(T29, T30, T33)) → U4_ggaa(T29, T30, T33, T22, divA_in_gga(T33, s(T30), T22))
U4_ggaa(T29, T30, T33, T22, divA_out_gga(T33, s(T30), T22)) → pB_out_ggaa(T29, T30, T33, T22)
U1_gga(T29, T30, T22, pB_out_ggaa(T29, T30, X32, T22)) → divA_out_gga(s(T29), s(T30), s(T22))

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U3_ggaa(x1, x2, x3, x4, x5)  =  U3_ggaa(x1, x2, x5)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x1, x2, x3, x5)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(s(T29), s(T30), s(T22)) → U1_GGA(T29, T30, T22, pB_in_ggaa(T29, T30, X32, T22))
DIVA_IN_GGA(s(T29), s(T30), s(T22)) → PB_IN_GGAA(T29, T30, X32, T22)
PB_IN_GGAA(T29, T30, T33, T22) → U3_GGAA(T29, T30, T33, T22, minusC_in_gga(T29, T30, T33))
PB_IN_GGAA(T29, T30, T33, T22) → MINUSC_IN_GGA(T29, T30, T33)
MINUSC_IN_GGA(s(T50), s(T51), X58) → U2_GGA(T50, T51, X58, minusC_in_gga(T50, T51, X58))
MINUSC_IN_GGA(s(T50), s(T51), X58) → MINUSC_IN_GGA(T50, T51, X58)
U3_GGAA(T29, T30, T33, T22, minusC_out_gga(T29, T30, T33)) → U4_GGAA(T29, T30, T33, T22, divA_in_gga(T33, s(T30), T22))
U3_GGAA(T29, T30, T33, T22, minusC_out_gga(T29, T30, T33)) → DIVA_IN_GGA(T33, s(T30), T22)

The TRS R consists of the following rules:

divA_in_gga(0, T10, 0) → divA_out_gga(0, T10, 0)
divA_in_gga(s(T29), s(T30), s(T22)) → U1_gga(T29, T30, T22, pB_in_ggaa(T29, T30, X32, T22))
pB_in_ggaa(T29, T30, T33, T22) → U3_ggaa(T29, T30, T33, T22, minusC_in_gga(T29, T30, T33))
minusC_in_gga(0, T40, 0) → minusC_out_gga(0, T40, 0)
minusC_in_gga(T45, 0, T45) → minusC_out_gga(T45, 0, T45)
minusC_in_gga(s(T50), s(T51), X58) → U2_gga(T50, T51, X58, minusC_in_gga(T50, T51, X58))
U2_gga(T50, T51, X58, minusC_out_gga(T50, T51, X58)) → minusC_out_gga(s(T50), s(T51), X58)
U3_ggaa(T29, T30, T33, T22, minusC_out_gga(T29, T30, T33)) → U4_ggaa(T29, T30, T33, T22, divA_in_gga(T33, s(T30), T22))
U4_ggaa(T29, T30, T33, T22, divA_out_gga(T33, s(T30), T22)) → pB_out_ggaa(T29, T30, T33, T22)
U1_gga(T29, T30, T22, pB_out_ggaa(T29, T30, X32, T22)) → divA_out_gga(s(T29), s(T30), s(T22))

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U3_ggaa(x1, x2, x3, x4, x5)  =  U3_ggaa(x1, x2, x5)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x1, x2, x3, x5)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)
DIVA_IN_GGA(x1, x2, x3)  =  DIVA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
PB_IN_GGAA(x1, x2, x3, x4)  =  PB_IN_GGAA(x1, x2)
U3_GGAA(x1, x2, x3, x4, x5)  =  U3_GGAA(x1, x2, x5)
MINUSC_IN_GGA(x1, x2, x3)  =  MINUSC_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
U4_GGAA(x1, x2, x3, x4, x5)  =  U4_GGAA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(s(T29), s(T30), s(T22)) → U1_GGA(T29, T30, T22, pB_in_ggaa(T29, T30, X32, T22))
DIVA_IN_GGA(s(T29), s(T30), s(T22)) → PB_IN_GGAA(T29, T30, X32, T22)
PB_IN_GGAA(T29, T30, T33, T22) → U3_GGAA(T29, T30, T33, T22, minusC_in_gga(T29, T30, T33))
PB_IN_GGAA(T29, T30, T33, T22) → MINUSC_IN_GGA(T29, T30, T33)
MINUSC_IN_GGA(s(T50), s(T51), X58) → U2_GGA(T50, T51, X58, minusC_in_gga(T50, T51, X58))
MINUSC_IN_GGA(s(T50), s(T51), X58) → MINUSC_IN_GGA(T50, T51, X58)
U3_GGAA(T29, T30, T33, T22, minusC_out_gga(T29, T30, T33)) → U4_GGAA(T29, T30, T33, T22, divA_in_gga(T33, s(T30), T22))
U3_GGAA(T29, T30, T33, T22, minusC_out_gga(T29, T30, T33)) → DIVA_IN_GGA(T33, s(T30), T22)

The TRS R consists of the following rules:

divA_in_gga(0, T10, 0) → divA_out_gga(0, T10, 0)
divA_in_gga(s(T29), s(T30), s(T22)) → U1_gga(T29, T30, T22, pB_in_ggaa(T29, T30, X32, T22))
pB_in_ggaa(T29, T30, T33, T22) → U3_ggaa(T29, T30, T33, T22, minusC_in_gga(T29, T30, T33))
minusC_in_gga(0, T40, 0) → minusC_out_gga(0, T40, 0)
minusC_in_gga(T45, 0, T45) → minusC_out_gga(T45, 0, T45)
minusC_in_gga(s(T50), s(T51), X58) → U2_gga(T50, T51, X58, minusC_in_gga(T50, T51, X58))
U2_gga(T50, T51, X58, minusC_out_gga(T50, T51, X58)) → minusC_out_gga(s(T50), s(T51), X58)
U3_ggaa(T29, T30, T33, T22, minusC_out_gga(T29, T30, T33)) → U4_ggaa(T29, T30, T33, T22, divA_in_gga(T33, s(T30), T22))
U4_ggaa(T29, T30, T33, T22, divA_out_gga(T33, s(T30), T22)) → pB_out_ggaa(T29, T30, T33, T22)
U1_gga(T29, T30, T22, pB_out_ggaa(T29, T30, X32, T22)) → divA_out_gga(s(T29), s(T30), s(T22))

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U3_ggaa(x1, x2, x3, x4, x5)  =  U3_ggaa(x1, x2, x5)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x1, x2, x3, x5)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)
DIVA_IN_GGA(x1, x2, x3)  =  DIVA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
PB_IN_GGAA(x1, x2, x3, x4)  =  PB_IN_GGAA(x1, x2)
U3_GGAA(x1, x2, x3, x4, x5)  =  U3_GGAA(x1, x2, x5)
MINUSC_IN_GGA(x1, x2, x3)  =  MINUSC_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
U4_GGAA(x1, x2, x3, x4, x5)  =  U4_GGAA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSC_IN_GGA(s(T50), s(T51), X58) → MINUSC_IN_GGA(T50, T51, X58)

The TRS R consists of the following rules:

divA_in_gga(0, T10, 0) → divA_out_gga(0, T10, 0)
divA_in_gga(s(T29), s(T30), s(T22)) → U1_gga(T29, T30, T22, pB_in_ggaa(T29, T30, X32, T22))
pB_in_ggaa(T29, T30, T33, T22) → U3_ggaa(T29, T30, T33, T22, minusC_in_gga(T29, T30, T33))
minusC_in_gga(0, T40, 0) → minusC_out_gga(0, T40, 0)
minusC_in_gga(T45, 0, T45) → minusC_out_gga(T45, 0, T45)
minusC_in_gga(s(T50), s(T51), X58) → U2_gga(T50, T51, X58, minusC_in_gga(T50, T51, X58))
U2_gga(T50, T51, X58, minusC_out_gga(T50, T51, X58)) → minusC_out_gga(s(T50), s(T51), X58)
U3_ggaa(T29, T30, T33, T22, minusC_out_gga(T29, T30, T33)) → U4_ggaa(T29, T30, T33, T22, divA_in_gga(T33, s(T30), T22))
U4_ggaa(T29, T30, T33, T22, divA_out_gga(T33, s(T30), T22)) → pB_out_ggaa(T29, T30, T33, T22)
U1_gga(T29, T30, T22, pB_out_ggaa(T29, T30, X32, T22)) → divA_out_gga(s(T29), s(T30), s(T22))

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U3_ggaa(x1, x2, x3, x4, x5)  =  U3_ggaa(x1, x2, x5)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x1, x2, x3, x5)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)
MINUSC_IN_GGA(x1, x2, x3)  =  MINUSC_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSC_IN_GGA(s(T50), s(T51), X58) → MINUSC_IN_GGA(T50, T51, X58)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MINUSC_IN_GGA(x1, x2, x3)  =  MINUSC_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUSC_IN_GGA(s(T50), s(T51)) → MINUSC_IN_GGA(T50, T51)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUSC_IN_GGA(s(T50), s(T51)) → MINUSC_IN_GGA(T50, T51)
    The graph contains the following edges 1 > 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(s(T29), s(T30), s(T22)) → PB_IN_GGAA(T29, T30, X32, T22)
PB_IN_GGAA(T29, T30, T33, T22) → U3_GGAA(T29, T30, T33, T22, minusC_in_gga(T29, T30, T33))
U3_GGAA(T29, T30, T33, T22, minusC_out_gga(T29, T30, T33)) → DIVA_IN_GGA(T33, s(T30), T22)

The TRS R consists of the following rules:

divA_in_gga(0, T10, 0) → divA_out_gga(0, T10, 0)
divA_in_gga(s(T29), s(T30), s(T22)) → U1_gga(T29, T30, T22, pB_in_ggaa(T29, T30, X32, T22))
pB_in_ggaa(T29, T30, T33, T22) → U3_ggaa(T29, T30, T33, T22, minusC_in_gga(T29, T30, T33))
minusC_in_gga(0, T40, 0) → minusC_out_gga(0, T40, 0)
minusC_in_gga(T45, 0, T45) → minusC_out_gga(T45, 0, T45)
minusC_in_gga(s(T50), s(T51), X58) → U2_gga(T50, T51, X58, minusC_in_gga(T50, T51, X58))
U2_gga(T50, T51, X58, minusC_out_gga(T50, T51, X58)) → minusC_out_gga(s(T50), s(T51), X58)
U3_ggaa(T29, T30, T33, T22, minusC_out_gga(T29, T30, T33)) → U4_ggaa(T29, T30, T33, T22, divA_in_gga(T33, s(T30), T22))
U4_ggaa(T29, T30, T33, T22, divA_out_gga(T33, s(T30), T22)) → pB_out_ggaa(T29, T30, T33, T22)
U1_gga(T29, T30, T22, pB_out_ggaa(T29, T30, X32, T22)) → divA_out_gga(s(T29), s(T30), s(T22))

The argument filtering Pi contains the following mapping:
divA_in_gga(x1, x2, x3)  =  divA_in_gga(x1, x2)
0  =  0
divA_out_gga(x1, x2, x3)  =  divA_out_gga(x1, x2, x3)
s(x1)  =  s(x1)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
pB_in_ggaa(x1, x2, x3, x4)  =  pB_in_ggaa(x1, x2)
U3_ggaa(x1, x2, x3, x4, x5)  =  U3_ggaa(x1, x2, x5)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
U4_ggaa(x1, x2, x3, x4, x5)  =  U4_ggaa(x1, x2, x3, x5)
pB_out_ggaa(x1, x2, x3, x4)  =  pB_out_ggaa(x1, x2, x3, x4)
DIVA_IN_GGA(x1, x2, x3)  =  DIVA_IN_GGA(x1, x2)
PB_IN_GGAA(x1, x2, x3, x4)  =  PB_IN_GGAA(x1, x2)
U3_GGAA(x1, x2, x3, x4, x5)  =  U3_GGAA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(s(T29), s(T30), s(T22)) → PB_IN_GGAA(T29, T30, X32, T22)
PB_IN_GGAA(T29, T30, T33, T22) → U3_GGAA(T29, T30, T33, T22, minusC_in_gga(T29, T30, T33))
U3_GGAA(T29, T30, T33, T22, minusC_out_gga(T29, T30, T33)) → DIVA_IN_GGA(T33, s(T30), T22)

The TRS R consists of the following rules:

minusC_in_gga(0, T40, 0) → minusC_out_gga(0, T40, 0)
minusC_in_gga(T45, 0, T45) → minusC_out_gga(T45, 0, T45)
minusC_in_gga(s(T50), s(T51), X58) → U2_gga(T50, T51, X58, minusC_in_gga(T50, T51, X58))
U2_gga(T50, T51, X58, minusC_out_gga(T50, T51, X58)) → minusC_out_gga(s(T50), s(T51), X58)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
minusC_in_gga(x1, x2, x3)  =  minusC_in_gga(x1, x2)
minusC_out_gga(x1, x2, x3)  =  minusC_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
DIVA_IN_GGA(x1, x2, x3)  =  DIVA_IN_GGA(x1, x2)
PB_IN_GGAA(x1, x2, x3, x4)  =  PB_IN_GGAA(x1, x2)
U3_GGAA(x1, x2, x3, x4, x5)  =  U3_GGAA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(s(T29), s(T30)) → PB_IN_GGAA(T29, T30)
PB_IN_GGAA(T29, T30) → U3_GGAA(T29, T30, minusC_in_gga(T29, T30))
U3_GGAA(T29, T30, minusC_out_gga(T29, T30, T33)) → DIVA_IN_GGA(T33, s(T30))

The TRS R consists of the following rules:

minusC_in_gga(0, T40) → minusC_out_gga(0, T40, 0)
minusC_in_gga(T45, 0) → minusC_out_gga(T45, 0, T45)
minusC_in_gga(s(T50), s(T51)) → U2_gga(T50, T51, minusC_in_gga(T50, T51))
U2_gga(T50, T51, minusC_out_gga(T50, T51, X58)) → minusC_out_gga(s(T50), s(T51), X58)

The set Q consists of the following terms:

minusC_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


PB_IN_GGAA(T29, T30) → U3_GGAA(T29, T30, minusC_in_gga(T29, T30))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIVA_IN_GGA(x1, x2)) = x1   
POL(PB_IN_GGAA(x1, x2)) = 1 + x1   
POL(U2_gga(x1, x2, x3)) = x3   
POL(U3_GGAA(x1, x2, x3)) = x3   
POL(minusC_in_gga(x1, x2)) = x1   
POL(minusC_out_gga(x1, x2, x3)) = x3   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

minusC_in_gga(0, T40) → minusC_out_gga(0, T40, 0)
minusC_in_gga(T45, 0) → minusC_out_gga(T45, 0, T45)
minusC_in_gga(s(T50), s(T51)) → U2_gga(T50, T51, minusC_in_gga(T50, T51))
U2_gga(T50, T51, minusC_out_gga(T50, T51, X58)) → minusC_out_gga(s(T50), s(T51), X58)

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIVA_IN_GGA(s(T29), s(T30)) → PB_IN_GGAA(T29, T30)
U3_GGAA(T29, T30, minusC_out_gga(T29, T30, T33)) → DIVA_IN_GGA(T33, s(T30))

The TRS R consists of the following rules:

minusC_in_gga(0, T40) → minusC_out_gga(0, T40, 0)
minusC_in_gga(T45, 0) → minusC_out_gga(T45, 0, T45)
minusC_in_gga(s(T50), s(T51)) → U2_gga(T50, T51, minusC_in_gga(T50, T51))
U2_gga(T50, T51, minusC_out_gga(T50, T51, X58)) → minusC_out_gga(s(T50), s(T51), X58)

The set Q consists of the following terms:

minusC_in_gga(x0, x1)
U2_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(24) TRUE