(0) Obligation:

Clauses:

p(X, Z) :- ','(q(X, Y), p(Y, Z)).
p(X, X).
q(a, b).

Query: p(g,a)

(1) LPReorderTransformerProof (EQUIVALENT transformation)

Reordered facts before rules in definite LP [PROLOG].

(2) Obligation:

Clauses:

p(X, X).
q(a, b).
p(X, Z) :- ','(q(X, Y), p(Y, Z)).

Query: p(g,a)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → f1_out1(z0)
f1_in(a) → U1(f17_in, a)
f1_in(a) → U2(f17_in, a)
U1(f17_out1(z0), a) → f1_out1(z0)
U2(f17_out1(z0), a) → f1_out1(z0)
f17_inf17_out1(b)
Tuples:

F1_IN(a) → c1(U1'(f17_in, a), F17_IN)
F1_IN(a) → c2(U2'(f17_in, a), F17_IN)
S tuples:

F1_IN(a) → c1(U1'(f17_in, a), F17_IN)
F1_IN(a) → c2(U2'(f17_in, a), F17_IN)
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f17_in

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1, c2

(5) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → f1_out1(z0)
f1_in(a) → U1(f17_in, a)
f1_in(a) → U2(f17_in, a)
U1(f17_out1(z0), a) → f1_out1(z0)
U2(f17_out1(z0), a) → f1_out1(z0)
f17_inf17_out1(b)
Tuples:

F1_IN(a) → c(U1'(f17_in, a))
F1_IN(a) → c(F17_IN)
F1_IN(a) → c(U2'(f17_in, a))
S tuples:

F1_IN(a) → c(U1'(f17_in, a))
F1_IN(a) → c(F17_IN)
F1_IN(a) → c(U2'(f17_in, a))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f17_in

Defined Pair Symbols:

F1_IN

Compound Symbols:

c

(7) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → f1_out1(z0)
f1_in(a) → U1(f17_in, a)
f1_in(a) → U2(f17_in, a)
U1(f17_out1(z0), a) → f1_out1(z0)
U2(f17_out1(z0), a) → f1_out1(z0)
f17_inf17_out1(b)
Tuples:

F1_IN(a) → c
S tuples:

F1_IN(a) → c
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f17_in

Defined Pair Symbols:

F1_IN

Compound Symbols:

c

(9) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F1_IN(a) → c
F1_IN(a) → c
F1_IN(a) → c
F1_IN(a) → c
Now S is empty

(10) BOUNDS(O(1), O(1))

(11) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → f2_out1(z0)
f2_in(a) → U1(f13_in, a)
f2_in(a) → U2(f13_in, a)
U1(f13_out1(z0), a) → f2_out1(z0)
U2(f13_out1(z0), a) → f2_out1(z0)
f13_inf13_out1(b)
Tuples:

F2_IN(a) → c1(U1'(f13_in, a), F13_IN)
F2_IN(a) → c2(U2'(f13_in, a), F13_IN)
S tuples:

F2_IN(a) → c1(U1'(f13_in, a), F13_IN)
F2_IN(a) → c2(U2'(f13_in, a), F13_IN)
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2, f13_in

Defined Pair Symbols:

F2_IN

Compound Symbols:

c1, c2

(13) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → f2_out1(z0)
f2_in(a) → U1(f13_in, a)
f2_in(a) → U2(f13_in, a)
U1(f13_out1(z0), a) → f2_out1(z0)
U2(f13_out1(z0), a) → f2_out1(z0)
f13_inf13_out1(b)
Tuples:

F2_IN(a) → c(U1'(f13_in, a))
F2_IN(a) → c(F13_IN)
F2_IN(a) → c(U2'(f13_in, a))
S tuples:

F2_IN(a) → c(U1'(f13_in, a))
F2_IN(a) → c(F13_IN)
F2_IN(a) → c(U2'(f13_in, a))
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2, f13_in

Defined Pair Symbols:

F2_IN

Compound Symbols:

c

(15) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → f2_out1(z0)
f2_in(a) → U1(f13_in, a)
f2_in(a) → U2(f13_in, a)
U1(f13_out1(z0), a) → f2_out1(z0)
U2(f13_out1(z0), a) → f2_out1(z0)
f13_inf13_out1(b)
Tuples:

F2_IN(a) → c
S tuples:

F2_IN(a) → c
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2, f13_in

Defined Pair Symbols:

F2_IN

Compound Symbols:

c