(0) Obligation:
Clauses:
p(X, Z) :- ','(q(X, Y), p(Y, Z)).
p(X, X).
q(a, b).
Query: p(g,a)
(1) LPReorderTransformerProof (EQUIVALENT transformation)
Reordered facts before rules in definite LP [PROLOG].
(2) Obligation:
Clauses:
p(X, X).
q(a, b).
p(X, Z) :- ','(q(X, Y), p(Y, Z)).
Query: p(g,a)
(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → f1_out1(z0)
f1_in(a) → U1(f17_in, a)
f1_in(a) → U2(f17_in, a)
U1(f17_out1(z0), a) → f1_out1(z0)
U2(f17_out1(z0), a) → f1_out1(z0)
f17_in → f17_out1(b)
Tuples:
F1_IN(a) → c1(U1'(f17_in, a), F17_IN)
F1_IN(a) → c2(U2'(f17_in, a), F17_IN)
S tuples:
F1_IN(a) → c1(U1'(f17_in, a), F17_IN)
F1_IN(a) → c2(U2'(f17_in, a), F17_IN)
K tuples:none
Defined Rule Symbols:
f1_in, U1, U2, f17_in
Defined Pair Symbols:
F1_IN
Compound Symbols:
c1, c2
(5) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → f1_out1(z0)
f1_in(a) → U1(f17_in, a)
f1_in(a) → U2(f17_in, a)
U1(f17_out1(z0), a) → f1_out1(z0)
U2(f17_out1(z0), a) → f1_out1(z0)
f17_in → f17_out1(b)
Tuples:
F1_IN(a) → c(U1'(f17_in, a))
F1_IN(a) → c(F17_IN)
F1_IN(a) → c(U2'(f17_in, a))
S tuples:
F1_IN(a) → c(U1'(f17_in, a))
F1_IN(a) → c(F17_IN)
F1_IN(a) → c(U2'(f17_in, a))
K tuples:none
Defined Rule Symbols:
f1_in, U1, U2, f17_in
Defined Pair Symbols:
F1_IN
Compound Symbols:
c
(7) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → f1_out1(z0)
f1_in(a) → U1(f17_in, a)
f1_in(a) → U2(f17_in, a)
U1(f17_out1(z0), a) → f1_out1(z0)
U2(f17_out1(z0), a) → f1_out1(z0)
f17_in → f17_out1(b)
Tuples:
F1_IN(a) → c
S tuples:
F1_IN(a) → c
K tuples:none
Defined Rule Symbols:
f1_in, U1, U2, f17_in
Defined Pair Symbols:
F1_IN
Compound Symbols:
c
(9) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F1_IN(a) → c
F1_IN(a) → c
F1_IN(a) → c
F1_IN(a) → c
Now S is empty
(10) BOUNDS(O(1), O(1))
(11) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → f2_out1(z0)
f2_in(a) → U1(f13_in, a)
f2_in(a) → U2(f13_in, a)
U1(f13_out1(z0), a) → f2_out1(z0)
U2(f13_out1(z0), a) → f2_out1(z0)
f13_in → f13_out1(b)
Tuples:
F2_IN(a) → c1(U1'(f13_in, a), F13_IN)
F2_IN(a) → c2(U2'(f13_in, a), F13_IN)
S tuples:
F2_IN(a) → c1(U1'(f13_in, a), F13_IN)
F2_IN(a) → c2(U2'(f13_in, a), F13_IN)
K tuples:none
Defined Rule Symbols:
f2_in, U1, U2, f13_in
Defined Pair Symbols:
F2_IN
Compound Symbols:
c1, c2
(13) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → f2_out1(z0)
f2_in(a) → U1(f13_in, a)
f2_in(a) → U2(f13_in, a)
U1(f13_out1(z0), a) → f2_out1(z0)
U2(f13_out1(z0), a) → f2_out1(z0)
f13_in → f13_out1(b)
Tuples:
F2_IN(a) → c(U1'(f13_in, a))
F2_IN(a) → c(F13_IN)
F2_IN(a) → c(U2'(f13_in, a))
S tuples:
F2_IN(a) → c(U1'(f13_in, a))
F2_IN(a) → c(F13_IN)
F2_IN(a) → c(U2'(f13_in, a))
K tuples:none
Defined Rule Symbols:
f2_in, U1, U2, f13_in
Defined Pair Symbols:
F2_IN
Compound Symbols:
c
(15) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → f2_out1(z0)
f2_in(a) → U1(f13_in, a)
f2_in(a) → U2(f13_in, a)
U1(f13_out1(z0), a) → f2_out1(z0)
U2(f13_out1(z0), a) → f2_out1(z0)
f13_in → f13_out1(b)
Tuples:
F2_IN(a) → c
S tuples:
F2_IN(a) → c
K tuples:none
Defined Rule Symbols:
f2_in, U1, U2, f13_in
Defined Pair Symbols:
F2_IN
Compound Symbols:
c