(0) Obligation:
Clauses:
append([], Ys, Ys).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).
sublist(X, Y) :- ','(append(P, X1, Y), append(X2, X, P)).
Query: sublist(a,g)
(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(2) Obligation:
Complex Complexity Dependency Tuples Problem
MAX
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:
F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'
Compound Symbols:
c, c2, c3, c1, c3, c4, c2, c5, c6
Complex Complexity Dependency Tuples Problem
MULTIPLY
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'
Compound Symbols:
c, c2, c3, c1, c3, c4, c2, c5, c6
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'
Compound Symbols:
c, c2, c3, c1, c3, c4, c2, c5, c6
(3) MaxProof (BOTH BOUNDS(ID, ID) transformation)
Took the maximum complexity of the problems.
(4) Complex Obligation (MAX)
(5) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:
F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'
Compound Symbols:
c, c2, c3, c1, c3, c4, c2, c5, c6
(6) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(7) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(U1'(f7_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(U10'(f13_in(z0), z2, z0, z1))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
S tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F1_IN(z0) → c7(U1'(f7_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F7_IN, U2', F11_IN, U5', F13_IN, F1_IN, U9'
Compound Symbols:
c2, c3, c1, c4, c2, c5, c7
(8) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 7 trailing tuple parts
(9) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F1_IN(z0) → c7
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN
Compound Symbols:
c2, c5, c7, c3, c1, c4, c7
(10) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F1_IN(z0) → c7(F7_IN(z0))
F1_IN(z0) → c7
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7
U5'(f11_out1(z0, z1), z2) → c4
Now S is empty
(11) BOUNDS(O(1), O(1))
(12) Obligation:
Complex Complexity Dependency Tuples Problem
MULTIPLY
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'
Compound Symbols:
c, c2, c3, c1, c3, c4, c2, c5, c6
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'
Compound Symbols:
c, c2, c3, c1, c3, c4, c2, c5, c6
(13) MultiplicationProof (BOTH BOUNDS(ID, ID) transformation)
Multiplied the complexity of the problems.
(14) Complex Obligation (MULT)
(15) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'
Compound Symbols:
c, c2, c3, c1, c3, c4, c2, c5, c6
(16) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(17) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(U1'(f7_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(U10'(f13_in(z0), z2, z0, z1))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
S tuples:
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F7_IN, U2', F11_IN, U5', F13_IN, F1_IN, U9'
Compound Symbols:
c2, c3, c1, c4, c2, c5, c7
(18) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 7 trailing tuple parts
(19) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN
Compound Symbols:
c2, c5, c7, c3, c1, c4, c7
(20) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4
We considered the (Usable) Rules:
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
And the Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = 0
POL(F11_IN(x1)) = 0
POL(F13_IN(x1)) = 0
POL(F1_IN(x1)) = [3] + [2]x1
POL(F7_IN(x1)) = [3] + x1
POL(U2'(x1, x2)) = [3]
POL(U4(x1, x2)) = 0
POL(U5'(x1, x2)) = [2]
POL(U9'(x1, x2)) = [1] + x2
POL([]) = 0
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3) = 0
POL(c4) = 0
POL(c5(x1)) = x1
POL(c7) = 0
POL(c7(x1)) = x1
POL(f11_in(x1)) = 0
POL(f11_out1(x1, x2)) = 0
(21) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
K tuples:
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN
Compound Symbols:
c2, c5, c7, c3, c1, c4, c7
(22) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
We considered the (Usable) Rules:
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
And the Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [2] + x2
POL(F11_IN(x1)) = [1] + [2]x1
POL(F13_IN(x1)) = [1]
POL(F1_IN(x1)) = [3] + [2]x1
POL(F7_IN(x1)) = [2] + [2]x1
POL(U2'(x1, x2)) = [1] + x2
POL(U4(x1, x2)) = 0
POL(U5'(x1, x2)) = [2] + x2
POL(U9'(x1, x2)) = [2] + x2
POL([]) = 0
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3) = 0
POL(c4) = 0
POL(c5(x1)) = x1
POL(c7) = 0
POL(c7(x1)) = x1
POL(f11_in(x1)) = 0
POL(f11_out1(x1, x2)) = 0
(23) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:none
K tuples:
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN
Compound Symbols:
c2, c5, c7, c3, c1, c4, c7
(24) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(25) BOUNDS(O(1), O(1))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'
Compound Symbols:
c, c2, c3, c1, c3, c4, c2, c5, c6
(27) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(U1'(f7_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(U10'(f13_in(z0), z2, z0, z1))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
S tuples:
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c7(U10'(f13_in(z0), z2, z0, z1))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F7_IN, U2', F11_IN, U5', F13_IN, F1_IN, U9'
Compound Symbols:
c2, c3, c1, c4, c2, c5, c7
(29) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 7 trailing tuple parts
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
U9'(f11_out1(z0, z1), z2) → c7
K tuples:none
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN
Compound Symbols:
c2, c5, c7, c3, c1, c4, c7
(31) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7
We considered the (Usable) Rules:
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
And the Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = 0
POL(F11_IN(x1)) = [3]
POL(F13_IN(x1)) = 0
POL(F1_IN(x1)) = [3] + [3]x1
POL(F7_IN(x1)) = [3] + [3]x1
POL(U2'(x1, x2)) = x2
POL(U4(x1, x2)) = 0
POL(U5'(x1, x2)) = [3]x2
POL(U9'(x1, x2)) = [1] + [2]x2
POL([]) = 0
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3) = 0
POL(c4) = 0
POL(c5(x1)) = x1
POL(c7) = 0
POL(c7(x1)) = x1
POL(f11_in(x1)) = 0
POL(f11_out1(x1, x2)) = 0
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
K tuples:
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN
Compound Symbols:
c2, c5, c7, c3, c1, c4, c7
(33) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
We considered the (Usable) Rules:
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
And the Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [1] + x2
POL(F11_IN(x1)) = [1] + x1
POL(F13_IN(x1)) = x1
POL(F1_IN(x1)) = [2] + [3]x1
POL(F7_IN(x1)) = [1] + [3]x1
POL(U2'(x1, x2)) = [1] + x2
POL(U4(x1, x2)) = [1] + x1
POL(U5'(x1, x2)) = [1]
POL(U9'(x1, x2)) = [2]x1
POL([]) = 0
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3) = 0
POL(c4) = 0
POL(c5(x1)) = x1
POL(c7) = 0
POL(c7(x1)) = x1
POL(f11_in(x1)) = x1
POL(f11_out1(x1, x2)) = x1
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:none
K tuples:
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
Defined Rule Symbols:
f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10
Defined Pair Symbols:
F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN
Compound Symbols:
c2, c5, c7, c3, c1, c4, c7
(35) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(36) BOUNDS(O(1), O(1))
(37) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(38) Obligation:
Complex Complexity Dependency Tuples Problem
MAX
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:
F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'
Compound Symbols:
c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8
Complex Complexity Dependency Tuples Problem
MULTIPLY
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'
Compound Symbols:
c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'
Compound Symbols:
c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8
(39) MaxProof (BOTH BOUNDS(ID, ID) transformation)
Took the maximum complexity of the problems.
(40) Complex Obligation (MAX)
(41) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:
F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'
Compound Symbols:
c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8
(42) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 4 of 14 dangling nodes:
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
(43) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
S tuples:
F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN
Compound Symbols:
c, c4, c6, c7, c9, c1, c3, c4, c2
(44) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(45) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F2_IN(z0) → c5(U1'(f8_in(z0), z0))
F2_IN(z0) → c5(F8_IN(z0))
F10_IN(.(z0, z1)) → c5(U2'(f24_in(z1, z0), .(z0, z1)))
F10_IN(.(z0, z1)) → c5(F24_IN(z1, z0))
F8_IN(z0) → c5(U5'(f9_in, f10_in(z0), z0))
F8_IN(z0) → c5(F9_IN)
F8_IN(z0) → c5(F10_IN(z0))
F24_IN(z0, z1) → c5(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(F28_IN(z0))
S tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F2_IN(z0) → c5(U1'(f8_in(z0), z0))
F2_IN(z0) → c5(F8_IN(z0))
F10_IN(.(z0, z1)) → c5(U2'(f24_in(z1, z0), .(z0, z1)))
F10_IN(.(z0, z1)) → c5(F24_IN(z1, z0))
F8_IN(z0) → c5(U5'(f9_in, f10_in(z0), z0))
F8_IN(z0) → c5(F9_IN)
F8_IN(z0) → c5(F10_IN(z0))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F24_IN, U3', F28_IN, U7', F45_IN, F2_IN, F10_IN, F8_IN
Compound Symbols:
c6, c7, c1, c4, c2, c5
(46) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 9 trailing tuple parts
(47) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F2_IN(z0) → c5(F8_IN(z0))
F10_IN(.(z0, z1)) → c5(F24_IN(z1, z0))
F8_IN(z0) → c5(F10_IN(z0))
F24_IN(z0, z1) → c5(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
F2_IN(z0) → c5
F10_IN(.(z0, z1)) → c5
F8_IN(z0) → c5
S tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F2_IN(z0) → c5(F8_IN(z0))
F10_IN(.(z0, z1)) → c5(F24_IN(z1, z0))
F8_IN(z0) → c5(F10_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F2_IN(z0) → c5
F10_IN(.(z0, z1)) → c5
F8_IN(z0) → c5
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F24_IN, F2_IN, F10_IN, F8_IN, U3', F28_IN, U7', F45_IN
Compound Symbols:
c6, c5, c7, c1, c4, c2, c5
(48) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F2_IN(z0) → c5(F8_IN(z0))
F8_IN(z0) → c5(F10_IN(z0))
F2_IN(z0) → c5
F10_IN(.(z0, z1)) → c5
F8_IN(z0) → c5
F8_IN(z0) → c5
F8_IN(z0) → c5(F10_IN(z0))
F8_IN(z0) → c5
F8_IN(z0) → c5
F10_IN(.(z0, z1)) → c5(F24_IN(z1, z0))
F10_IN(.(z0, z1)) → c5
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
U7'(f28_out1(z0, z1), z2, z3) → c4
Now S is empty
(49) BOUNDS(O(1), O(1))
(50) Obligation:
Complex Complexity Dependency Tuples Problem
MULTIPLY
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'
Compound Symbols:
c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'
Compound Symbols:
c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8
(51) MultiplicationProof (BOTH BOUNDS(ID, ID) transformation)
Multiplied the complexity of the problems.
(52) Complex Obligation (MULT)
(53) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'
Compound Symbols:
c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8
(54) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(55) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
F2_IN(z0) → c10(U1'(f8_in(z0), z0))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(U2'(f24_in(z1, z0), .(z0, z1)))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(U5'(f9_in, f10_in(z0), z0))
F8_IN(z0) → c10(F9_IN)
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
S tuples:
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F24_IN, U3', F28_IN, U7', F8_IN, F45_IN, U12', F2_IN, F10_IN
Compound Symbols:
c6, c7, c1, c4, c2, c5, c8, c10
(56) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 12 trailing tuple parts
(57) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
S tuples:
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F24_IN, F2_IN, F10_IN, F8_IN, U3', F28_IN, U7', F45_IN, U12'
Compound Symbols:
c6, c5, c10, c7, c1, c4, c6, c2, c8, c10
(58) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F24_IN(z0, z1) → c10(F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
We considered the (Usable) Rules:
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
And the Tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [1]
POL(F10_IN(x1)) = [1] + x1
POL(F24_IN(x1, x2)) = [2]
POL(F28_IN(x1)) = [1]
POL(F2_IN(x1)) = [2] + [2]x1
POL(F45_IN(x1)) = 0
POL(F8_IN(x1)) = [2] + x1
POL(U12'(x1, x2, x3)) = 0
POL(U3'(x1, x2, x3)) = [1]
POL(U6(x1, x2)) = 0
POL(U7'(x1, x2, x3)) = [2]
POL([]) = 0
POL(c1(x1)) = x1
POL(c10) = 0
POL(c10(x1)) = x1
POL(c2(x1)) = x1
POL(c4) = 0
POL(c5(x1)) = x1
POL(c6) = 0
POL(c6(x1)) = x1
POL(c7) = 0
POL(c8) = 0
POL(f28_in(x1)) = 0
POL(f28_out1(x1, x2)) = 0
(59) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
S tuples:
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
K tuples:
F24_IN(z0, z1) → c10(F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F24_IN, F2_IN, F10_IN, F8_IN, U3', F28_IN, U7', F45_IN, U12'
Compound Symbols:
c6, c5, c10, c7, c1, c4, c6, c2, c8, c10
(60) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
We considered the (Usable) Rules:
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
And the Tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [1] + x1
POL(F10_IN(x1)) = [2] + x1
POL(F24_IN(x1, x2)) = [2] + x2
POL(F28_IN(x1)) = [1]
POL(F2_IN(x1)) = [3] + [3]x1
POL(F45_IN(x1)) = 0
POL(F8_IN(x1)) = [3] + [2]x1
POL(U12'(x1, x2, x3)) = [1]
POL(U3'(x1, x2, x3)) = x3
POL(U6(x1, x2)) = [2] + x2
POL(U7'(x1, x2, x3)) = 0
POL([]) = 0
POL(c1(x1)) = x1
POL(c10) = 0
POL(c10(x1)) = x1
POL(c2(x1)) = x1
POL(c4) = 0
POL(c5(x1)) = x1
POL(c6) = 0
POL(c6(x1)) = x1
POL(c7) = 0
POL(c8) = 0
POL(f28_in(x1)) = [3] + x1
POL(f28_out1(x1, x2)) = 0
(61) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
S tuples:
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
K tuples:
F24_IN(z0, z1) → c10(F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F24_IN, F2_IN, F10_IN, F8_IN, U3', F28_IN, U7', F45_IN, U12'
Compound Symbols:
c6, c5, c10, c7, c1, c4, c6, c2, c8, c10
(62) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
We considered the (Usable) Rules:
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
And the Tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [1] + x1 + x2
POL(F10_IN(x1)) = [2] + [3]x1
POL(F24_IN(x1, x2)) = [1] + [2]x1 + [3]x2
POL(F28_IN(x1)) = x1
POL(F2_IN(x1)) = [2] + [3]x1
POL(F45_IN(x1)) = 0
POL(F8_IN(x1)) = [2] + [3]x1
POL(U12'(x1, x2, x3)) = [1] + [2]x3
POL(U3'(x1, x2, x3)) = [1]
POL(U6(x1, x2)) = 0
POL(U7'(x1, x2, x3)) = x2 + [3]x3
POL([]) = 0
POL(c1(x1)) = x1
POL(c10) = 0
POL(c10(x1)) = x1
POL(c2(x1)) = x1
POL(c4) = 0
POL(c5(x1)) = x1
POL(c6) = 0
POL(c6(x1)) = x1
POL(c7) = 0
POL(c8) = 0
POL(f28_in(x1)) = 0
POL(f28_out1(x1, x2)) = 0
(63) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
S tuples:none
K tuples:
F24_IN(z0, z1) → c10(F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F24_IN, F2_IN, F10_IN, F8_IN, U3', F28_IN, U7', F45_IN, U12'
Compound Symbols:
c6, c5, c10, c7, c1, c4, c6, c2, c8, c10
(64) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(65) BOUNDS(O(1), O(1))
(66) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'
Compound Symbols:
c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8
(67) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(68) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
F2_IN(z0) → c10(U1'(f8_in(z0), z0))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(U2'(f24_in(z1, z0), .(z0, z1)))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(U5'(f9_in, f10_in(z0), z0))
F8_IN(z0) → c10(F9_IN)
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
S tuples:
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F24_IN, U3', F28_IN, U7', F8_IN, F45_IN, U12', F2_IN, F10_IN
Compound Symbols:
c6, c7, c1, c4, c2, c5, c8, c10
(69) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 12 trailing tuple parts
(70) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_in → f9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
S tuples:
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
K tuples:none
Defined Rule Symbols:
f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14
Defined Pair Symbols:
F24_IN, F2_IN, F10_IN, F8_IN, U3', F28_IN, U7', F45_IN, U12'
Compound Symbols:
c6, c5, c10, c7, c1, c4, c6, c2, c8, c10