(0) Obligation:

Clauses:

append([], Ys, Ys).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).
sublist(X, Y) :- ','(append(P, X1, Y), append(X2, X, P)).

Query: sublist(a,g)

(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(2) Obligation:

Complex Complexity Dependency Tuples Problem
MAX

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:

F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6


Complex Complexity Dependency Tuples Problem
MULTIPLY

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:

F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6


Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:

F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6



(3) MaxProof (BOTH BOUNDS(ID, ID) transformation)

Took the maximum complexity of the problems.

(4) Complex Obligation (MAX)

(5) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:

F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6

(6) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(7) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(U1'(f7_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(U10'(f13_in(z0), z2, z0, z1))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
S tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F1_IN(z0) → c7(U1'(f7_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F7_IN, U2', F11_IN, U5', F13_IN, F1_IN, U9'

Compound Symbols:

c2, c3, c1, c4, c2, c5, c7

(8) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 7 trailing tuple parts

(9) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F1_IN(z0) → c7
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN

Compound Symbols:

c2, c5, c7, c3, c1, c4, c7

(10) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F1_IN(z0) → c7(F7_IN(z0))
F1_IN(z0) → c7
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7
U5'(f11_out1(z0, z1), z2) → c4
Now S is empty

(11) BOUNDS(O(1), O(1))

(12) Obligation:

Complex Complexity Dependency Tuples Problem
MULTIPLY

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:

F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6


Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:

F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6


(13) MultiplicationProof (BOTH BOUNDS(ID, ID) transformation)

Multiplied the complexity of the problems.

(14) Complex Obligation (MULT)

(15) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:

F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6

(16) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(17) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(U1'(f7_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(U10'(f13_in(z0), z2, z0, z1))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
S tuples:

F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F7_IN, U2', F11_IN, U5', F13_IN, F1_IN, U9'

Compound Symbols:

c2, c3, c1, c4, c2, c5, c7

(18) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 7 trailing tuple parts

(19) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:

F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN

Compound Symbols:

c2, c5, c7, c3, c1, c4, c7

(20) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4
We considered the (Usable) Rules:

f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
And the Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = 0   
POL(F11_IN(x1)) = 0   
POL(F13_IN(x1)) = 0   
POL(F1_IN(x1)) = [3] + [2]x1   
POL(F7_IN(x1)) = [3] + x1   
POL(U2'(x1, x2)) = [3]   
POL(U4(x1, x2)) = 0   
POL(U5'(x1, x2)) = [2]   
POL(U9'(x1, x2)) = [1] + x2   
POL([]) = 0   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3) = 0   
POL(c4) = 0   
POL(c5(x1)) = x1   
POL(c7) = 0   
POL(c7(x1)) = x1   
POL(f11_in(x1)) = 0   
POL(f11_out1(x1, x2)) = 0   

(21) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:

F11_IN(.(z0, z1)) → c1(F11_IN(z1))
K tuples:

F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN

Compound Symbols:

c2, c5, c7, c3, c1, c4, c7

(22) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F11_IN(.(z0, z1)) → c1(F11_IN(z1))
We considered the (Usable) Rules:

f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
And the Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [2] + x2   
POL(F11_IN(x1)) = [1] + [2]x1   
POL(F13_IN(x1)) = [1]   
POL(F1_IN(x1)) = [3] + [2]x1   
POL(F7_IN(x1)) = [2] + [2]x1   
POL(U2'(x1, x2)) = [1] + x2   
POL(U4(x1, x2)) = 0   
POL(U5'(x1, x2)) = [2] + x2   
POL(U9'(x1, x2)) = [2] + x2   
POL([]) = 0   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3) = 0   
POL(c4) = 0   
POL(c5(x1)) = x1   
POL(c7) = 0   
POL(c7(x1)) = x1   
POL(f11_in(x1)) = 0   
POL(f11_out1(x1, x2)) = 0   

(23) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:none
K tuples:

F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN

Compound Symbols:

c2, c5, c7, c3, c1, c4, c7

(24) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(25) BOUNDS(O(1), O(1))

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F1_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F7_IN(z0) → c3(U5'(f11_in(z0), z0), F11_IN(z0))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
S tuples:

F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c6(U10'(f13_in(z0), z2, z0, z1), F13_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F7_IN, U2', F11_IN, U5', F13_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6

(27) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(28) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
U2'(f11_out1(z0, z1), z2) → c3(U3'(f13_in(z0), z2, z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4(U6'(f13_in(z0), z2, z0, z1))
F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(U1'(f7_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(U10'(f13_in(z0), z2, z0, z1))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
S tuples:

F13_IN(.(z0, z1)) → c1(U7'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F13_IN(.(z0, z1)) → c2(U8'(f13_in(z1), .(z0, z1)), F13_IN(z1))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c7(U10'(f13_in(z0), z2, z0, z1))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F7_IN, U2', F11_IN, U5', F13_IN, F1_IN, U9'

Compound Symbols:

c2, c3, c1, c4, c2, c5, c7

(29) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 7 trailing tuple parts

(30) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:

F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
U9'(f11_out1(z0, z1), z2) → c7
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN

Compound Symbols:

c2, c5, c7, c3, c1, c4, c7

(31) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7
We considered the (Usable) Rules:

f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
And the Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = 0   
POL(F11_IN(x1)) = [3]   
POL(F13_IN(x1)) = 0   
POL(F1_IN(x1)) = [3] + [3]x1   
POL(F7_IN(x1)) = [3] + [3]x1   
POL(U2'(x1, x2)) = x2   
POL(U4(x1, x2)) = 0   
POL(U5'(x1, x2)) = [3]x2   
POL(U9'(x1, x2)) = [1] + [2]x2   
POL([]) = 0   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3) = 0   
POL(c4) = 0   
POL(c5(x1)) = x1   
POL(c7) = 0   
POL(c7(x1)) = x1   
POL(f11_in(x1)) = 0   
POL(f11_out1(x1, x2)) = 0   

(32) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:

F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
K tuples:

F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN

Compound Symbols:

c2, c5, c7, c3, c1, c4, c7

(33) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
We considered the (Usable) Rules:

f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
And the Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1] + x2   
POL(F11_IN(x1)) = [1] + x1   
POL(F13_IN(x1)) = x1   
POL(F1_IN(x1)) = [2] + [3]x1   
POL(F7_IN(x1)) = [1] + [3]x1   
POL(U2'(x1, x2)) = [1] + x2   
POL(U4(x1, x2)) = [1] + x1   
POL(U5'(x1, x2)) = [1]   
POL(U9'(x1, x2)) = [2]x1   
POL([]) = 0   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3) = 0   
POL(c4) = 0   
POL(c5(x1)) = x1   
POL(c7) = 0   
POL(c7(x1)) = x1   
POL(f11_in(x1)) = x1   
POL(f11_out1(x1, x2)) = x1   

(34) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1, z2, z3), z4) → f1_out1(z3)
f7_in(z0) → U2(f11_in(z0), z0)
f7_in(z0) → U5(f11_in(z0), z0)
f7_in(z0) → U9(f11_in(z0), z0)
U2(f11_out1(z0, z1), z2) → U3(f13_in(z0), z2, z0, z1)
U3(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f11_in(z0) → f11_out1([], z0)
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1(z0, z1), .(z2, z3)) → f11_out1(.(z2, z0), z1)
U5(f11_out1(z0, z1), z2) → U6(f13_in(z0), z2, z0, z1)
U6(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
f13_in(z0) → f13_out1([], z0)
f13_in(.(z0, z1)) → U7(f13_in(z1), .(z0, z1))
f13_in(.(z0, z1)) → U8(f13_in(z1), .(z0, z1))
U7(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U8(f13_out1(z0, z1), .(z2, z3)) → f13_out1(.(z2, z0), z1)
U9(f11_out1(z0, z1), z2) → U10(f13_in(z0), z2, z0, z1)
U10(f13_out1(z0, z1), z2, z3, z4) → f7_out1(z3, z4, z0, z1)
Tuples:

F7_IN(z0) → c2(U2'(f11_in(z0), z0))
F7_IN(z0) → c5(U9'(f11_in(z0), z0))
F1_IN(z0) → c7(F7_IN(z0))
F7_IN(z0) → c7(U5'(f11_in(z0), z0))
F7_IN(z0) → c7(F11_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U2'(f11_out1(z0, z1), z2) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1(z0, z1), z2) → c4
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
F1_IN(z0) → c7
U9'(f11_out1(z0, z1), z2) → c7
S tuples:none
K tuples:

F7_IN(z0) → c5(U9'(f11_in(z0), z0))
U9'(f11_out1(z0, z1), z2) → c7(F13_IN(z0))
U9'(f11_out1(z0, z1), z2) → c7
F13_IN(.(z0, z1)) → c1(F13_IN(z1))
F13_IN(.(z0, z1)) → c2(F13_IN(z1))
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f11_in, U4, U5, U6, f13_in, U7, U8, U9, U10

Defined Pair Symbols:

F7_IN, F1_IN, U9', U2', F11_IN, U5', F13_IN

Compound Symbols:

c2, c5, c7, c3, c1, c4, c7

(35) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(36) BOUNDS(O(1), O(1))

(37) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(38) Obligation:

Complex Complexity Dependency Tuples Problem
MAX

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:

F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'

Compound Symbols:

c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8


Complex Complexity Dependency Tuples Problem
MULTIPLY

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:

F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'

Compound Symbols:

c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8


Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:

F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'

Compound Symbols:

c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8



(39) MaxProof (BOTH BOUNDS(ID, ID) transformation)

Took the maximum complexity of the problems.

(40) Complex Obligation (MAX)

(41) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:

F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'

Compound Symbols:

c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8

(42) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)

Removed 4 of 14 dangling nodes:

U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))

(43) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
S tuples:

F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN

Compound Symbols:

c, c4, c6, c7, c9, c1, c3, c4, c2

(44) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(45) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F2_IN(z0) → c5(U1'(f8_in(z0), z0))
F2_IN(z0) → c5(F8_IN(z0))
F10_IN(.(z0, z1)) → c5(U2'(f24_in(z1, z0), .(z0, z1)))
F10_IN(.(z0, z1)) → c5(F24_IN(z1, z0))
F8_IN(z0) → c5(U5'(f9_in, f10_in(z0), z0))
F8_IN(z0) → c5(F9_IN)
F8_IN(z0) → c5(F10_IN(z0))
F24_IN(z0, z1) → c5(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(F28_IN(z0))
S tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F2_IN(z0) → c5(U1'(f8_in(z0), z0))
F2_IN(z0) → c5(F8_IN(z0))
F10_IN(.(z0, z1)) → c5(U2'(f24_in(z1, z0), .(z0, z1)))
F10_IN(.(z0, z1)) → c5(F24_IN(z1, z0))
F8_IN(z0) → c5(U5'(f9_in, f10_in(z0), z0))
F8_IN(z0) → c5(F9_IN)
F8_IN(z0) → c5(F10_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F24_IN, U3', F28_IN, U7', F45_IN, F2_IN, F10_IN, F8_IN

Compound Symbols:

c6, c7, c1, c4, c2, c5

(46) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 9 trailing tuple parts

(47) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F2_IN(z0) → c5(F8_IN(z0))
F10_IN(.(z0, z1)) → c5(F24_IN(z1, z0))
F8_IN(z0) → c5(F10_IN(z0))
F24_IN(z0, z1) → c5(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
F2_IN(z0) → c5
F10_IN(.(z0, z1)) → c5
F8_IN(z0) → c5
S tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F2_IN(z0) → c5(F8_IN(z0))
F10_IN(.(z0, z1)) → c5(F24_IN(z1, z0))
F8_IN(z0) → c5(F10_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F2_IN(z0) → c5
F10_IN(.(z0, z1)) → c5
F8_IN(z0) → c5
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F24_IN, F2_IN, F10_IN, F8_IN, U3', F28_IN, U7', F45_IN

Compound Symbols:

c6, c5, c7, c1, c4, c2, c5

(48) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F2_IN(z0) → c5(F8_IN(z0))
F8_IN(z0) → c5(F10_IN(z0))
F2_IN(z0) → c5
F10_IN(.(z0, z1)) → c5
F8_IN(z0) → c5
F8_IN(z0) → c5
F8_IN(z0) → c5(F10_IN(z0))
F8_IN(z0) → c5
F8_IN(z0) → c5
F10_IN(.(z0, z1)) → c5(F24_IN(z1, z0))
F10_IN(.(z0, z1)) → c5
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
U7'(f28_out1(z0, z1), z2, z3) → c4
Now S is empty

(49) BOUNDS(O(1), O(1))

(50) Obligation:

Complex Complexity Dependency Tuples Problem
MULTIPLY

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:

F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'

Compound Symbols:

c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8


Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:

F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'

Compound Symbols:

c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8


(51) MultiplicationProof (BOTH BOUNDS(ID, ID) transformation)

Multiplied the complexity of the problems.

(52) Complex Obligation (MULT)

(53) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:

F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'

Compound Symbols:

c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8

(54) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(55) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
F2_IN(z0) → c10(U1'(f8_in(z0), z0))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(U2'(f24_in(z1, z0), .(z0, z1)))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(U5'(f9_in, f10_in(z0), z0))
F8_IN(z0) → c10(F9_IN)
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
S tuples:

F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F24_IN, U3', F28_IN, U7', F8_IN, F45_IN, U12', F2_IN, F10_IN

Compound Symbols:

c6, c7, c1, c4, c2, c5, c8, c10

(56) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 12 trailing tuple parts

(57) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
S tuples:

F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F24_IN, F2_IN, F10_IN, F8_IN, U3', F28_IN, U7', F45_IN, U12'

Compound Symbols:

c6, c5, c10, c7, c1, c4, c6, c2, c8, c10

(58) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F24_IN(z0, z1) → c10(F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
We considered the (Usable) Rules:

f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
And the Tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1]   
POL(F10_IN(x1)) = [1] + x1   
POL(F24_IN(x1, x2)) = [2]   
POL(F28_IN(x1)) = [1]   
POL(F2_IN(x1)) = [2] + [2]x1   
POL(F45_IN(x1)) = 0   
POL(F8_IN(x1)) = [2] + x1   
POL(U12'(x1, x2, x3)) = 0   
POL(U3'(x1, x2, x3)) = [1]   
POL(U6(x1, x2)) = 0   
POL(U7'(x1, x2, x3)) = [2]   
POL([]) = 0   
POL(c1(x1)) = x1   
POL(c10) = 0   
POL(c10(x1)) = x1   
POL(c2(x1)) = x1   
POL(c4) = 0   
POL(c5(x1)) = x1   
POL(c6) = 0   
POL(c6(x1)) = x1   
POL(c7) = 0   
POL(c8) = 0   
POL(f28_in(x1)) = 0   
POL(f28_out1(x1, x2)) = 0   

(59) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
S tuples:

F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
K tuples:

F24_IN(z0, z1) → c10(F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F24_IN, F2_IN, F10_IN, F8_IN, U3', F28_IN, U7', F45_IN, U12'

Compound Symbols:

c6, c5, c10, c7, c1, c4, c6, c2, c8, c10

(60) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
We considered the (Usable) Rules:

f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
And the Tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1] + x1   
POL(F10_IN(x1)) = [2] + x1   
POL(F24_IN(x1, x2)) = [2] + x2   
POL(F28_IN(x1)) = [1]   
POL(F2_IN(x1)) = [3] + [3]x1   
POL(F45_IN(x1)) = 0   
POL(F8_IN(x1)) = [3] + [2]x1   
POL(U12'(x1, x2, x3)) = [1]   
POL(U3'(x1, x2, x3)) = x3   
POL(U6(x1, x2)) = [2] + x2   
POL(U7'(x1, x2, x3)) = 0   
POL([]) = 0   
POL(c1(x1)) = x1   
POL(c10) = 0   
POL(c10(x1)) = x1   
POL(c2(x1)) = x1   
POL(c4) = 0   
POL(c5(x1)) = x1   
POL(c6) = 0   
POL(c6(x1)) = x1   
POL(c7) = 0   
POL(c8) = 0   
POL(f28_in(x1)) = [3] + x1   
POL(f28_out1(x1, x2)) = 0   

(61) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
S tuples:

F28_IN(.(z0, z1)) → c1(F28_IN(z1))
K tuples:

F24_IN(z0, z1) → c10(F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F24_IN, F2_IN, F10_IN, F8_IN, U3', F28_IN, U7', F45_IN, U12'

Compound Symbols:

c6, c5, c10, c7, c1, c4, c6, c2, c8, c10

(62) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F28_IN(.(z0, z1)) → c1(F28_IN(z1))
We considered the (Usable) Rules:

f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
And the Tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1] + x1 + x2   
POL(F10_IN(x1)) = [2] + [3]x1   
POL(F24_IN(x1, x2)) = [1] + [2]x1 + [3]x2   
POL(F28_IN(x1)) = x1   
POL(F2_IN(x1)) = [2] + [3]x1   
POL(F45_IN(x1)) = 0   
POL(F8_IN(x1)) = [2] + [3]x1   
POL(U12'(x1, x2, x3)) = [1] + [2]x3   
POL(U3'(x1, x2, x3)) = [1]   
POL(U6(x1, x2)) = 0   
POL(U7'(x1, x2, x3)) = x2 + [3]x3   
POL([]) = 0   
POL(c1(x1)) = x1   
POL(c10) = 0   
POL(c10(x1)) = x1   
POL(c2(x1)) = x1   
POL(c4) = 0   
POL(c5(x1)) = x1   
POL(c6) = 0   
POL(c6(x1)) = x1   
POL(c7) = 0   
POL(c8) = 0   
POL(f28_in(x1)) = 0   
POL(f28_out1(x1, x2)) = 0   

(63) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
S tuples:none
K tuples:

F24_IN(z0, z1) → c10(F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F24_IN, F2_IN, F10_IN, F8_IN, U3', F28_IN, U7', F45_IN, U12'

Compound Symbols:

c6, c5, c10, c7, c1, c4, c6, c2, c8, c10

(64) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(65) BOUNDS(O(1), O(1))

(66) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F2_IN(z0) → c(U1'(f8_in(z0), z0), F8_IN(z0))
F10_IN(.(z0, z1)) → c4(U2'(f24_in(z1, z0), .(z0, z1)), F24_IN(z1, z0))
F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c9(U5'(f9_in, f10_in(z0), z0), F9_IN, F10_IN(z0))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
F24_IN(z0, z1) → c3(U7'(f28_in(z0), z0, z1), F28_IN(z0))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
S tuples:

F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F2_IN, F10_IN, F24_IN, U3', F8_IN, F28_IN, U7', F45_IN, U12'

Compound Symbols:

c, c4, c6, c7, c9, c1, c3, c4, c2, c5, c8

(67) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(68) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
U3'(f28_out1(z0, z1), z2, z3) → c7(U4'(f29_in(z3, z0), z2, z3, z0, z1))
F28_IN(.(z0, z1)) → c1(U6'(f28_in(z1), .(z0, z1)), F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4(U8'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c6(U9'(f9_in, f10_in(z0), z0))
F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
F2_IN(z0) → c10(U1'(f8_in(z0), z0))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(U2'(f24_in(z1, z0), .(z0, z1)))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(U5'(f9_in, f10_in(z0), z0))
F8_IN(z0) → c10(F9_IN)
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
S tuples:

F45_IN(.(z0, z1)) → c1(U10'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F45_IN(.(z0, z1)) → c2(U11'(f45_in(z1), .(z0, z1)), F45_IN(z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
U12'(f28_out1(z0, z1), z2, z3) → c6(U13'(f29_in(z3, z0), z2, z3, z0, z1))
F8_IN(z0) → c8(U14'(f9_in, f10_in(z0), z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F24_IN, U3', F28_IN, U7', F8_IN, F45_IN, U12', F2_IN, F10_IN

Compound Symbols:

c6, c7, c1, c4, c2, c5, c8, c10

(69) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 12 trailing tuple parts

(70) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f8_in(z0), z0)
U1(f8_out1(z0, z1), z2) → f2_out1(z1)
U1(f8_out2(z0, z1, z2, z3), z4) → f2_out1(z3)
f9_inf9_out1([], [])
f10_in(.(z0, z1)) → U2(f24_in(z1, z0), .(z0, z1))
U2(f24_out1(z0, z1, z2, z3), .(z4, z5)) → f10_out1(.(z4, z0), z1, z2, z3)
f24_in(z0, z1) → U3(f28_in(z0), z0, z1)
f24_in(z0, z1) → U7(f28_in(z0), z0, z1)
f24_in(z0, z1) → U12(f28_in(z0), z0, z1)
U3(f28_out1(z0, z1), z2, z3) → U4(f29_in(z3, z0), z2, z3, z0, z1)
U4(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
f8_in(z0) → U5(f9_in, f10_in(z0), z0)
f8_in(z0) → U9(f9_in, f10_in(z0), z0)
f8_in(z0) → U14(f9_in, f10_in(z0), z0)
U5(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U5(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f28_in(z0) → f28_out1([], z0)
f28_in(.(z0, z1)) → U6(f28_in(z1), .(z0, z1))
U6(f28_out1(z0, z1), .(z2, z3)) → f28_out1(.(z2, z0), z1)
U7(f28_out1(z0, z1), z2, z3) → U8(f29_in(z3, z0), z2, z3, z0, z1)
U8(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U9(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U9(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
f45_in(z0) → f45_out1([], z0)
f45_in(.(z0, z1)) → U10(f45_in(z1), .(z0, z1))
f45_in(.(z0, z1)) → U11(f45_in(z1), .(z0, z1))
U10(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U11(f45_out1(z0, z1), .(z2, z3)) → f45_out1(.(z2, z0), z1)
U12(f28_out1(z0, z1), z2, z3) → U13(f29_in(z3, z0), z2, z3, z0, z1)
U13(f29_out1(z0, z1), z2, z3, z4, z5) → f24_out1(z4, z5, z0, z1)
U14(f9_out1(z0, z1), z2, z3) → f8_out1(z0, z1)
U14(z0, f10_out1(z1, z2, z3, z4), z5) → f8_out2(z1, z2, z3, z4)
Tuples:

F24_IN(z0, z1) → c6(U3'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F2_IN(z0) → c10(F8_IN(z0))
F10_IN(.(z0, z1)) → c10(F24_IN(z1, z0))
F8_IN(z0) → c10(F10_IN(z0))
F24_IN(z0, z1) → c10(U7'(f28_in(z0), z0, z1))
F24_IN(z0, z1) → c10(F28_IN(z0))
U3'(f28_out1(z0, z1), z2, z3) → c7
F28_IN(.(z0, z1)) → c1(F28_IN(z1))
U7'(f28_out1(z0, z1), z2, z3) → c4
F8_IN(z0) → c6
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
F2_IN(z0) → c10
F10_IN(.(z0, z1)) → c10
F8_IN(z0) → c10
S tuples:

F24_IN(z0, z1) → c5(U12'(f28_in(z0), z0, z1))
F45_IN(.(z0, z1)) → c1(F45_IN(z1))
F45_IN(.(z0, z1)) → c2(F45_IN(z1))
U12'(f28_out1(z0, z1), z2, z3) → c6
F8_IN(z0) → c8
K tuples:none
Defined Rule Symbols:

f2_in, U1, f9_in, f10_in, U2, f24_in, U3, U4, f8_in, U5, f28_in, U6, U7, U8, U9, f45_in, U10, U11, U12, U13, U14

Defined Pair Symbols:

F24_IN, F2_IN, F10_IN, F8_IN, U3', F28_IN, U7', F45_IN, U12'

Compound Symbols:

c6, c5, c10, c7, c1, c4, c6, c2, c8, c10