(0) Obligation:

Clauses:

concatenate([], L, L).
concatenate(.(X, L1), L2, .(X, L3)) :- concatenate(L1, L2, L3).
member(X, .(X, L)).
member(X, .(Y, L)) :- member(X, L).
reverse(L, L1) :- reverse_concatenate(L, [], L1).
reverse_concatenate([], L, L).
reverse_concatenate(.(X, L1), L2, L3) :- reverse_concatenate(L1, .(X, L2), L3).

Query: reverse_concatenate(g,g,a)

(1) LPReorderTransformerProof (EQUIVALENT transformation)

Reordered facts before rules in definite LP [PROLOG].

(2) Obligation:

Clauses:

concatenate([], L, L).
member(X, .(X, L)).
reverse_concatenate([], L, L).
concatenate(.(X, L1), L2, .(X, L3)) :- concatenate(L1, L2, L3).
member(X, .(Y, L)) :- member(X, L).
reverse(L, L1) :- reverse_concatenate(L, [], L1).
reverse_concatenate(.(X, L1), L2, L3) :- reverse_concatenate(L1, .(X, L2), L3).

Query: reverse_concatenate(g,g,a)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([], z0) → f1_out1(z0)
f1_in(.(z0, z1), z2) → U1(f1_in(z1, .(z0, z2)), .(z0, z1), z2)
U1(f1_out1(z0), .(z1, z2), z3) → f1_out1(z0)
Tuples:

F1_IN(.(z0, z1), z2) → c1(U1'(f1_in(z1, .(z0, z2)), .(z0, z1), z2), F1_IN(z1, .(z0, z2)))
S tuples:

F1_IN(.(z0, z1), z2) → c1(U1'(f1_in(z1, .(z0, z2)), .(z0, z1), z2), F1_IN(z1, .(z0, z2)))
K tuples:none
Defined Rule Symbols:

f1_in, U1

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([], z0) → f1_out1(z0)
f1_in(.(z0, z1), z2) → U1(f1_in(z1, .(z0, z2)), .(z0, z1), z2)
U1(f1_out1(z0), .(z1, z2), z3) → f1_out1(z0)
Tuples:

F1_IN(.(z0, z1), z2) → c1(F1_IN(z1, .(z0, z2)))
S tuples:

F1_IN(.(z0, z1), z2) → c1(F1_IN(z1, .(z0, z2)))
K tuples:none
Defined Rule Symbols:

f1_in, U1

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F1_IN(.(z0, z1), z2) → c1(F1_IN(z1, .(z0, z2)))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(.(z0, z1), z2) → c1(F1_IN(z1, .(z0, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [3] + x2   
POL(F1_IN(x1, x2)) = [3]x1 + x2   
POL(c1(x1)) = x1   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([], z0) → f1_out1(z0)
f1_in(.(z0, z1), z2) → U1(f1_in(z1, .(z0, z2)), .(z0, z1), z2)
U1(f1_out1(z0), .(z1, z2), z3) → f1_out1(z0)
Tuples:

F1_IN(.(z0, z1), z2) → c1(F1_IN(z1, .(z0, z2)))
S tuples:none
K tuples:

F1_IN(.(z0, z1), z2) → c1(F1_IN(z1, .(z0, z2)))
Defined Rule Symbols:

f1_in, U1

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1

(9) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(10) BOUNDS(O(1), O(1))

(11) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([], z0) → f2_out1(z0)
f2_in(.(z0, []), z1) → f2_out1(.(z0, z1))
f2_in(.(z0, .(z1, z2)), z3) → U1(f2_in(z2, .(z1, .(z0, z3))), .(z0, .(z1, z2)), z3)
U1(f2_out1(z0), .(z1, .(z2, z3)), z4) → f2_out1(z0)
Tuples:

F2_IN(.(z0, .(z1, z2)), z3) → c2(U1'(f2_in(z2, .(z1, .(z0, z3))), .(z0, .(z1, z2)), z3), F2_IN(z2, .(z1, .(z0, z3))))
S tuples:

F2_IN(.(z0, .(z1, z2)), z3) → c2(U1'(f2_in(z2, .(z1, .(z0, z3))), .(z0, .(z1, z2)), z3), F2_IN(z2, .(z1, .(z0, z3))))
K tuples:none
Defined Rule Symbols:

f2_in, U1

Defined Pair Symbols:

F2_IN

Compound Symbols:

c2

(13) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([], z0) → f2_out1(z0)
f2_in(.(z0, []), z1) → f2_out1(.(z0, z1))
f2_in(.(z0, .(z1, z2)), z3) → U1(f2_in(z2, .(z1, .(z0, z3))), .(z0, .(z1, z2)), z3)
U1(f2_out1(z0), .(z1, .(z2, z3)), z4) → f2_out1(z0)
Tuples:

F2_IN(.(z0, .(z1, z2)), z3) → c2(F2_IN(z2, .(z1, .(z0, z3))))
S tuples:

F2_IN(.(z0, .(z1, z2)), z3) → c2(F2_IN(z2, .(z1, .(z0, z3))))
K tuples:none
Defined Rule Symbols:

f2_in, U1

Defined Pair Symbols:

F2_IN

Compound Symbols:

c2

(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(.(z0, .(z1, z2)), z3) → c2(F2_IN(z2, .(z1, .(z0, z3))))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(.(z0, .(z1, z2)), z3) → c2(F2_IN(z2, .(z1, .(z0, z3))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [3] + x2   
POL(F2_IN(x1, x2)) = [3]x1 + [2]x2   
POL(c2(x1)) = x1   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([], z0) → f2_out1(z0)
f2_in(.(z0, []), z1) → f2_out1(.(z0, z1))
f2_in(.(z0, .(z1, z2)), z3) → U1(f2_in(z2, .(z1, .(z0, z3))), .(z0, .(z1, z2)), z3)
U1(f2_out1(z0), .(z1, .(z2, z3)), z4) → f2_out1(z0)
Tuples:

F2_IN(.(z0, .(z1, z2)), z3) → c2(F2_IN(z2, .(z1, .(z0, z3))))
S tuples:none
K tuples:

F2_IN(.(z0, .(z1, z2)), z3) → c2(F2_IN(z2, .(z1, .(z0, z3))))
Defined Rule Symbols:

f2_in, U1

Defined Pair Symbols:

F2_IN

Compound Symbols:

c2