(0) Obligation:

Clauses:

reverse([], X, X).
reverse(.(X, Y), Z, U) :- reverse(Y, Z, .(X, U)).

Query: reverse(g,a,g)

(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([], z0) → f2_out1(z0)
f2_in(.(z0, z1), z2) → U1(f2_in(z1, .(z0, z2)), .(z0, z1), z2)
U1(f2_out1(z0), .(z1, z2), z3) → f2_out1(z0)
Tuples:

F2_IN(.(z0, z1), z2) → c1(U1'(f2_in(z1, .(z0, z2)), .(z0, z1), z2), F2_IN(z1, .(z0, z2)))
S tuples:

F2_IN(.(z0, z1), z2) → c1(U1'(f2_in(z1, .(z0, z2)), .(z0, z1), z2), F2_IN(z1, .(z0, z2)))
K tuples:none
Defined Rule Symbols:

f2_in, U1

Defined Pair Symbols:

F2_IN

Compound Symbols:

c1

(3) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([], z0) → f2_out1(z0)
f2_in(.(z0, z1), z2) → U1(f2_in(z1, .(z0, z2)), .(z0, z1), z2)
U1(f2_out1(z0), .(z1, z2), z3) → f2_out1(z0)
Tuples:

F2_IN(.(z0, z1), z2) → c1(F2_IN(z1, .(z0, z2)))
S tuples:

F2_IN(.(z0, z1), z2) → c1(F2_IN(z1, .(z0, z2)))
K tuples:none
Defined Rule Symbols:

f2_in, U1

Defined Pair Symbols:

F2_IN

Compound Symbols:

c1

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(.(z0, z1), z2) → c1(F2_IN(z1, .(z0, z2)))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(.(z0, z1), z2) → c1(F2_IN(z1, .(z0, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [3] + x2   
POL(F2_IN(x1, x2)) = [3]x1 + x2   
POL(c1(x1)) = x1   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([], z0) → f2_out1(z0)
f2_in(.(z0, z1), z2) → U1(f2_in(z1, .(z0, z2)), .(z0, z1), z2)
U1(f2_out1(z0), .(z1, z2), z3) → f2_out1(z0)
Tuples:

F2_IN(.(z0, z1), z2) → c1(F2_IN(z1, .(z0, z2)))
S tuples:none
K tuples:

F2_IN(.(z0, z1), z2) → c1(F2_IN(z1, .(z0, z2)))
Defined Rule Symbols:

f2_in, U1

Defined Pair Symbols:

F2_IN

Compound Symbols:

c1

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))

(9) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([], z0) → f1_out1(z0)
f1_in(.(z0, []), z1) → f1_out1(.(z0, z1))
f1_in(.(z0, .(z1, z2)), z3) → U1(f1_in(z2, .(z1, .(z0, z3))), .(z0, .(z1, z2)), z3)
U1(f1_out1(z0), .(z1, .(z2, z3)), z4) → f1_out1(z0)
Tuples:

F1_IN(.(z0, .(z1, z2)), z3) → c2(U1'(f1_in(z2, .(z1, .(z0, z3))), .(z0, .(z1, z2)), z3), F1_IN(z2, .(z1, .(z0, z3))))
S tuples:

F1_IN(.(z0, .(z1, z2)), z3) → c2(U1'(f1_in(z2, .(z1, .(z0, z3))), .(z0, .(z1, z2)), z3), F1_IN(z2, .(z1, .(z0, z3))))
K tuples:none
Defined Rule Symbols:

f1_in, U1

Defined Pair Symbols:

F1_IN

Compound Symbols:

c2

(11) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([], z0) → f1_out1(z0)
f1_in(.(z0, []), z1) → f1_out1(.(z0, z1))
f1_in(.(z0, .(z1, z2)), z3) → U1(f1_in(z2, .(z1, .(z0, z3))), .(z0, .(z1, z2)), z3)
U1(f1_out1(z0), .(z1, .(z2, z3)), z4) → f1_out1(z0)
Tuples:

F1_IN(.(z0, .(z1, z2)), z3) → c2(F1_IN(z2, .(z1, .(z0, z3))))
S tuples:

F1_IN(.(z0, .(z1, z2)), z3) → c2(F1_IN(z2, .(z1, .(z0, z3))))
K tuples:none
Defined Rule Symbols:

f1_in, U1

Defined Pair Symbols:

F1_IN

Compound Symbols:

c2

(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F1_IN(.(z0, .(z1, z2)), z3) → c2(F1_IN(z2, .(z1, .(z0, z3))))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(.(z0, .(z1, z2)), z3) → c2(F1_IN(z2, .(z1, .(z0, z3))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [3] + x2   
POL(F1_IN(x1, x2)) = [3]x1 + [2]x2   
POL(c2(x1)) = x1   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([], z0) → f1_out1(z0)
f1_in(.(z0, []), z1) → f1_out1(.(z0, z1))
f1_in(.(z0, .(z1, z2)), z3) → U1(f1_in(z2, .(z1, .(z0, z3))), .(z0, .(z1, z2)), z3)
U1(f1_out1(z0), .(z1, .(z2, z3)), z4) → f1_out1(z0)
Tuples:

F1_IN(.(z0, .(z1, z2)), z3) → c2(F1_IN(z2, .(z1, .(z0, z3))))
S tuples:none
K tuples:

F1_IN(.(z0, .(z1, z2)), z3) → c2(F1_IN(z2, .(z1, .(z0, z3))))
Defined Rule Symbols:

f1_in, U1

Defined Pair Symbols:

F1_IN

Compound Symbols:

c2