(0) Obligation:
Clauses:
ordered([]).
ordered(.(X, [])).
ordered(.(X, .(Y, Xs))) :- ','(le(X, Y), ordered(.(Y, Xs))).
le(s(X), s(Y)) :- le(X, Y).
le(0, s(0)).
le(0, 0).
Query: ordered(g)
(1) LPReorderTransformerProof (EQUIVALENT transformation)
Reordered facts before rules in definite LP [PROLOG].
(2) Obligation:
Clauses:
ordered([]).
ordered(.(X, [])).
le(0, s(0)).
le(0, 0).
ordered(.(X, .(Y, Xs))) :- ','(le(X, Y), ordered(.(Y, Xs))).
le(s(X), s(Y)) :- le(X, Y).
Query: ordered(g)
(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, z2))) → U1(f24_in(z0, z1, z2), .(z0, .(z1, z2)))
U1(f24_out1, .(z0, .(z1, z2))) → f2_out1
f32_in(0, s(0)) → f32_out1
f32_in(0, 0) → f32_out1
f32_in(s(z0), s(z1)) → U2(f32_in(z0, z1), s(z0), s(z1))
U2(f32_out1, s(z0), s(z1)) → f32_out1
f24_in(z0, z1, z2) → U3(f32_in(z0, z1), z0, z1, z2)
U3(f32_out1, z0, z1, z2) → U4(f2_in(.(z1, z2)), z0, z1, z2)
U4(f2_out1, z0, z1, z2) → f24_out1
Tuples:
F2_IN(.(z0, .(z1, z2))) → c2(U1'(f24_in(z0, z1, z2), .(z0, .(z1, z2))), F24_IN(z0, z1, z2))
F32_IN(s(z0), s(z1)) → c6(U2'(f32_in(z0, z1), s(z0), s(z1)), F32_IN(z0, z1))
F24_IN(z0, z1, z2) → c8(U3'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
U3'(f32_out1, z0, z1, z2) → c9(U4'(f2_in(.(z1, z2)), z0, z1, z2), F2_IN(.(z1, z2)))
S tuples:
F2_IN(.(z0, .(z1, z2))) → c2(U1'(f24_in(z0, z1, z2), .(z0, .(z1, z2))), F24_IN(z0, z1, z2))
F32_IN(s(z0), s(z1)) → c6(U2'(f32_in(z0, z1), s(z0), s(z1)), F32_IN(z0, z1))
F24_IN(z0, z1, z2) → c8(U3'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
U3'(f32_out1, z0, z1, z2) → c9(U4'(f2_in(.(z1, z2)), z0, z1, z2), F2_IN(.(z1, z2)))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f32_in, U2, f24_in, U3, U4
Defined Pair Symbols:
F2_IN, F32_IN, F24_IN, U3'
Compound Symbols:
c2, c6, c8, c9
(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, z2))) → U1(f24_in(z0, z1, z2), .(z0, .(z1, z2)))
U1(f24_out1, .(z0, .(z1, z2))) → f2_out1
f32_in(0, s(0)) → f32_out1
f32_in(0, 0) → f32_out1
f32_in(s(z0), s(z1)) → U2(f32_in(z0, z1), s(z0), s(z1))
U2(f32_out1, s(z0), s(z1)) → f32_out1
f24_in(z0, z1, z2) → U3(f32_in(z0, z1), z0, z1, z2)
U3(f32_out1, z0, z1, z2) → U4(f2_in(.(z1, z2)), z0, z1, z2)
U4(f2_out1, z0, z1, z2) → f24_out1
Tuples:
F24_IN(z0, z1, z2) → c8(U3'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F24_IN(z0, z1, z2))
F32_IN(s(z0), s(z1)) → c6(F32_IN(z0, z1))
U3'(f32_out1, z0, z1, z2) → c9(F2_IN(.(z1, z2)))
S tuples:
F24_IN(z0, z1, z2) → c8(U3'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F24_IN(z0, z1, z2))
F32_IN(s(z0), s(z1)) → c6(F32_IN(z0, z1))
U3'(f32_out1, z0, z1, z2) → c9(F2_IN(.(z1, z2)))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f32_in, U2, f24_in, U3, U4
Defined Pair Symbols:
F24_IN, F2_IN, F32_IN, U3'
Compound Symbols:
c8, c2, c6, c9
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F32_IN(s(z0), s(z1)) → c6(F32_IN(z0, z1))
We considered the (Usable) Rules:
f32_in(0, s(0)) → f32_out1
f32_in(0, 0) → f32_out1
f32_in(s(z0), s(z1)) → U2(f32_in(z0, z1), s(z0), s(z1))
U2(f32_out1, s(z0), s(z1)) → f32_out1
And the Tuples:
F24_IN(z0, z1, z2) → c8(U3'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F24_IN(z0, z1, z2))
F32_IN(s(z0), s(z1)) → c6(F32_IN(z0, z1))
U3'(f32_out1, z0, z1, z2) → c9(F2_IN(.(z1, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = x1 + x2
POL(0) = 0
POL(F24_IN(x1, x2, x3)) = x1 + x2 + x3
POL(F2_IN(x1)) = x1
POL(F32_IN(x1, x2)) = x1
POL(U2(x1, x2, x3)) = 0
POL(U3'(x1, x2, x3, x4)) = x3 + x4
POL(c2(x1)) = x1
POL(c6(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(f32_in(x1, x2)) = 0
POL(f32_out1) = 0
POL(s(x1)) = [1] + x1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, z2))) → U1(f24_in(z0, z1, z2), .(z0, .(z1, z2)))
U1(f24_out1, .(z0, .(z1, z2))) → f2_out1
f32_in(0, s(0)) → f32_out1
f32_in(0, 0) → f32_out1
f32_in(s(z0), s(z1)) → U2(f32_in(z0, z1), s(z0), s(z1))
U2(f32_out1, s(z0), s(z1)) → f32_out1
f24_in(z0, z1, z2) → U3(f32_in(z0, z1), z0, z1, z2)
U3(f32_out1, z0, z1, z2) → U4(f2_in(.(z1, z2)), z0, z1, z2)
U4(f2_out1, z0, z1, z2) → f24_out1
Tuples:
F24_IN(z0, z1, z2) → c8(U3'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F24_IN(z0, z1, z2))
F32_IN(s(z0), s(z1)) → c6(F32_IN(z0, z1))
U3'(f32_out1, z0, z1, z2) → c9(F2_IN(.(z1, z2)))
S tuples:
F24_IN(z0, z1, z2) → c8(U3'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F24_IN(z0, z1, z2))
U3'(f32_out1, z0, z1, z2) → c9(F2_IN(.(z1, z2)))
K tuples:
F32_IN(s(z0), s(z1)) → c6(F32_IN(z0, z1))
Defined Rule Symbols:
f2_in, U1, f32_in, U2, f24_in, U3, U4
Defined Pair Symbols:
F24_IN, F2_IN, F32_IN, U3'
Compound Symbols:
c8, c2, c6, c9
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F24_IN(z0, z1, z2) → c8(U3'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
We considered the (Usable) Rules:
f32_in(0, s(0)) → f32_out1
f32_in(0, 0) → f32_out1
f32_in(s(z0), s(z1)) → U2(f32_in(z0, z1), s(z0), s(z1))
U2(f32_out1, s(z0), s(z1)) → f32_out1
And the Tuples:
F24_IN(z0, z1, z2) → c8(U3'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F24_IN(z0, z1, z2))
F32_IN(s(z0), s(z1)) → c6(F32_IN(z0, z1))
U3'(f32_out1, z0, z1, z2) → c9(F2_IN(.(z1, z2)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [1] + x2
POL(0) = 0
POL(F24_IN(x1, x2, x3)) = [2] + x3
POL(F2_IN(x1)) = x1
POL(F32_IN(x1, x2)) = 0
POL(U2(x1, x2, x3)) = 0
POL(U3'(x1, x2, x3, x4)) = [1] + x4
POL(c2(x1)) = x1
POL(c6(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(c9(x1)) = x1
POL(f32_in(x1, x2)) = 0
POL(f32_out1) = 0
POL(s(x1)) = 0
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, z2))) → U1(f24_in(z0, z1, z2), .(z0, .(z1, z2)))
U1(f24_out1, .(z0, .(z1, z2))) → f2_out1
f32_in(0, s(0)) → f32_out1
f32_in(0, 0) → f32_out1
f32_in(s(z0), s(z1)) → U2(f32_in(z0, z1), s(z0), s(z1))
U2(f32_out1, s(z0), s(z1)) → f32_out1
f24_in(z0, z1, z2) → U3(f32_in(z0, z1), z0, z1, z2)
U3(f32_out1, z0, z1, z2) → U4(f2_in(.(z1, z2)), z0, z1, z2)
U4(f2_out1, z0, z1, z2) → f24_out1
Tuples:
F24_IN(z0, z1, z2) → c8(U3'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F24_IN(z0, z1, z2))
F32_IN(s(z0), s(z1)) → c6(F32_IN(z0, z1))
U3'(f32_out1, z0, z1, z2) → c9(F2_IN(.(z1, z2)))
S tuples:
F2_IN(.(z0, .(z1, z2))) → c2(F24_IN(z0, z1, z2))
U3'(f32_out1, z0, z1, z2) → c9(F2_IN(.(z1, z2)))
K tuples:
F32_IN(s(z0), s(z1)) → c6(F32_IN(z0, z1))
F24_IN(z0, z1, z2) → c8(U3'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
Defined Rule Symbols:
f2_in, U1, f32_in, U2, f24_in, U3, U4
Defined Pair Symbols:
F24_IN, F2_IN, F32_IN, U3'
Compound Symbols:
c8, c2, c6, c9
(11) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
U3'(f32_out1, z0, z1, z2) → c9(F2_IN(.(z1, z2)))
F2_IN(.(z0, .(z1, z2))) → c2(F24_IN(z0, z1, z2))
F24_IN(z0, z1, z2) → c8(U3'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
Now S is empty
(12) BOUNDS(O(1), O(1))
(13) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(0, .(s(0), z0))) → U1(f28_in(z0), .(0, .(s(0), z0)))
f1_in(.(0, .(0, z0))) → U2(f36_in(z0), .(0, .(0, z0)))
f1_in(.(s(z0), .(s(z1), z2))) → U3(f51_in(z0, z1, z2), .(s(z0), .(s(z1), z2)))
U1(f28_out1, .(0, .(s(0), z0))) → f1_out1
U1(f28_out2, .(0, .(s(0), z0))) → f1_out1
U1(f28_out3, .(0, .(s(0), z0))) → f1_out1
U2(f36_out1, .(0, .(0, z0))) → f1_out1
U2(f36_out2, .(0, .(0, z0))) → f1_out1
U3(f51_out1, .(s(z0), .(s(z1), z2))) → f1_out1
f55_in(0, s(0)) → f55_out1
f55_in(0, 0) → f55_out1
f55_in(s(z0), s(z1)) → U4(f55_in(z0, z1), s(z0), s(z1))
U4(f55_out1, s(z0), s(z1)) → f55_out1
f51_in(z0, z1, z2) → U5(f55_in(z0, z1), z0, z1, z2)
U5(f55_out1, z0, z1, z2) → U6(f1_in(.(s(z1), z2)), z0, z1, z2)
U6(f1_out1, z0, z1, z2) → f51_out1
f28_in(z0) → U7(f1_in(.(s(0), z0)), f31_in(z0), z0)
U7(f1_out1, z0, z1) → f28_out1
U7(z0, f31_out1, z1) → f28_out2
U7(z0, f31_out2, z1) → f28_out3
f36_in(z0) → U8(f1_in(.(0, z0)), f41_in(z0), z0)
U8(f1_out1, z0, z1) → f36_out1
U8(z0, f41_out1, z1) → f36_out2
Tuples:
F1_IN(.(0, .(s(0), z0))) → c2(U1'(f28_in(z0), .(0, .(s(0), z0))), F28_IN(z0))
F1_IN(.(0, .(0, z0))) → c3(U2'(f36_in(z0), .(0, .(0, z0))), F36_IN(z0))
F1_IN(.(s(z0), .(s(z1), z2))) → c4(U3'(f51_in(z0, z1, z2), .(s(z0), .(s(z1), z2))), F51_IN(z0, z1, z2))
F55_IN(s(z0), s(z1)) → c13(U4'(f55_in(z0, z1), s(z0), s(z1)), F55_IN(z0, z1))
F51_IN(z0, z1, z2) → c15(U5'(f55_in(z0, z1), z0, z1, z2), F55_IN(z0, z1))
U5'(f55_out1, z0, z1, z2) → c16(U6'(f1_in(.(s(z1), z2)), z0, z1, z2), F1_IN(.(s(z1), z2)))
F28_IN(z0) → c18(U7'(f1_in(.(s(0), z0)), f31_in(z0), z0), F1_IN(.(s(0), z0)))
F36_IN(z0) → c22(U8'(f1_in(.(0, z0)), f41_in(z0), z0), F1_IN(.(0, z0)))
S tuples:
F1_IN(.(0, .(s(0), z0))) → c2(U1'(f28_in(z0), .(0, .(s(0), z0))), F28_IN(z0))
F1_IN(.(0, .(0, z0))) → c3(U2'(f36_in(z0), .(0, .(0, z0))), F36_IN(z0))
F1_IN(.(s(z0), .(s(z1), z2))) → c4(U3'(f51_in(z0, z1, z2), .(s(z0), .(s(z1), z2))), F51_IN(z0, z1, z2))
F55_IN(s(z0), s(z1)) → c13(U4'(f55_in(z0, z1), s(z0), s(z1)), F55_IN(z0, z1))
F51_IN(z0, z1, z2) → c15(U5'(f55_in(z0, z1), z0, z1, z2), F55_IN(z0, z1))
U5'(f55_out1, z0, z1, z2) → c16(U6'(f1_in(.(s(z1), z2)), z0, z1, z2), F1_IN(.(s(z1), z2)))
F28_IN(z0) → c18(U7'(f1_in(.(s(0), z0)), f31_in(z0), z0), F1_IN(.(s(0), z0)))
F36_IN(z0) → c22(U8'(f1_in(.(0, z0)), f41_in(z0), z0), F1_IN(.(0, z0)))
K tuples:none
Defined Rule Symbols:
f1_in, U1, U2, U3, f55_in, U4, f51_in, U5, U6, f28_in, U7, f36_in, U8
Defined Pair Symbols:
F1_IN, F55_IN, F51_IN, U5', F28_IN, F36_IN
Compound Symbols:
c2, c3, c4, c13, c15, c16, c18, c22
(15) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(0, .(s(0), z0))) → U1(f28_in(z0), .(0, .(s(0), z0)))
f1_in(.(0, .(0, z0))) → U2(f36_in(z0), .(0, .(0, z0)))
f1_in(.(s(z0), .(s(z1), z2))) → U3(f51_in(z0, z1, z2), .(s(z0), .(s(z1), z2)))
U1(f28_out1, .(0, .(s(0), z0))) → f1_out1
U1(f28_out2, .(0, .(s(0), z0))) → f1_out1
U1(f28_out3, .(0, .(s(0), z0))) → f1_out1
U2(f36_out1, .(0, .(0, z0))) → f1_out1
U2(f36_out2, .(0, .(0, z0))) → f1_out1
U3(f51_out1, .(s(z0), .(s(z1), z2))) → f1_out1
f55_in(0, s(0)) → f55_out1
f55_in(0, 0) → f55_out1
f55_in(s(z0), s(z1)) → U4(f55_in(z0, z1), s(z0), s(z1))
U4(f55_out1, s(z0), s(z1)) → f55_out1
f51_in(z0, z1, z2) → U5(f55_in(z0, z1), z0, z1, z2)
U5(f55_out1, z0, z1, z2) → U6(f1_in(.(s(z1), z2)), z0, z1, z2)
U6(f1_out1, z0, z1, z2) → f51_out1
f28_in(z0) → U7(f1_in(.(s(0), z0)), f31_in(z0), z0)
U7(f1_out1, z0, z1) → f28_out1
U7(z0, f31_out1, z1) → f28_out2
U7(z0, f31_out2, z1) → f28_out3
f36_in(z0) → U8(f1_in(.(0, z0)), f41_in(z0), z0)
U8(f1_out1, z0, z1) → f36_out1
U8(z0, f41_out1, z1) → f36_out2
Tuples:
F1_IN(.(0, .(0, z0))) → c3(U2'(f36_in(z0), .(0, .(0, z0))), F36_IN(z0))
F1_IN(.(s(z0), .(s(z1), z2))) → c4(U3'(f51_in(z0, z1, z2), .(s(z0), .(s(z1), z2))), F51_IN(z0, z1, z2))
F55_IN(s(z0), s(z1)) → c13(U4'(f55_in(z0, z1), s(z0), s(z1)), F55_IN(z0, z1))
F51_IN(z0, z1, z2) → c15(U5'(f55_in(z0, z1), z0, z1, z2), F55_IN(z0, z1))
U5'(f55_out1, z0, z1, z2) → c16(U6'(f1_in(.(s(z1), z2)), z0, z1, z2), F1_IN(.(s(z1), z2)))
F36_IN(z0) → c22(U8'(f1_in(.(0, z0)), f41_in(z0), z0), F1_IN(.(0, z0)))
F1_IN(.(0, .(s(0), z0))) → c(U1'(f28_in(z0), .(0, .(s(0), z0))))
F1_IN(.(0, .(s(0), z0))) → c(F28_IN(z0))
F28_IN(z0) → c(U7'(f1_in(.(s(0), z0)), f31_in(z0), z0))
F28_IN(z0) → c(F1_IN(.(s(0), z0)))
S tuples:
F1_IN(.(0, .(0, z0))) → c3(U2'(f36_in(z0), .(0, .(0, z0))), F36_IN(z0))
F1_IN(.(s(z0), .(s(z1), z2))) → c4(U3'(f51_in(z0, z1, z2), .(s(z0), .(s(z1), z2))), F51_IN(z0, z1, z2))
F55_IN(s(z0), s(z1)) → c13(U4'(f55_in(z0, z1), s(z0), s(z1)), F55_IN(z0, z1))
F51_IN(z0, z1, z2) → c15(U5'(f55_in(z0, z1), z0, z1, z2), F55_IN(z0, z1))
U5'(f55_out1, z0, z1, z2) → c16(U6'(f1_in(.(s(z1), z2)), z0, z1, z2), F1_IN(.(s(z1), z2)))
F36_IN(z0) → c22(U8'(f1_in(.(0, z0)), f41_in(z0), z0), F1_IN(.(0, z0)))
F1_IN(.(0, .(s(0), z0))) → c(U1'(f28_in(z0), .(0, .(s(0), z0))))
F1_IN(.(0, .(s(0), z0))) → c(F28_IN(z0))
F28_IN(z0) → c(U7'(f1_in(.(s(0), z0)), f31_in(z0), z0))
F28_IN(z0) → c(F1_IN(.(s(0), z0)))
K tuples:none
Defined Rule Symbols:
f1_in, U1, U2, U3, f55_in, U4, f51_in, U5, U6, f28_in, U7, f36_in, U8
Defined Pair Symbols:
F1_IN, F55_IN, F51_IN, U5', F36_IN, F28_IN
Compound Symbols:
c3, c4, c13, c15, c16, c22, c
(17) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 7 trailing tuple parts
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(0, .(s(0), z0))) → U1(f28_in(z0), .(0, .(s(0), z0)))
f1_in(.(0, .(0, z0))) → U2(f36_in(z0), .(0, .(0, z0)))
f1_in(.(s(z0), .(s(z1), z2))) → U3(f51_in(z0, z1, z2), .(s(z0), .(s(z1), z2)))
U1(f28_out1, .(0, .(s(0), z0))) → f1_out1
U1(f28_out2, .(0, .(s(0), z0))) → f1_out1
U1(f28_out3, .(0, .(s(0), z0))) → f1_out1
U2(f36_out1, .(0, .(0, z0))) → f1_out1
U2(f36_out2, .(0, .(0, z0))) → f1_out1
U3(f51_out1, .(s(z0), .(s(z1), z2))) → f1_out1
f55_in(0, s(0)) → f55_out1
f55_in(0, 0) → f55_out1
f55_in(s(z0), s(z1)) → U4(f55_in(z0, z1), s(z0), s(z1))
U4(f55_out1, s(z0), s(z1)) → f55_out1
f51_in(z0, z1, z2) → U5(f55_in(z0, z1), z0, z1, z2)
U5(f55_out1, z0, z1, z2) → U6(f1_in(.(s(z1), z2)), z0, z1, z2)
U6(f1_out1, z0, z1, z2) → f51_out1
f28_in(z0) → U7(f1_in(.(s(0), z0)), f31_in(z0), z0)
U7(f1_out1, z0, z1) → f28_out1
U7(z0, f31_out1, z1) → f28_out2
U7(z0, f31_out2, z1) → f28_out3
f36_in(z0) → U8(f1_in(.(0, z0)), f41_in(z0), z0)
U8(f1_out1, z0, z1) → f36_out1
U8(z0, f41_out1, z1) → f36_out2
Tuples:
F51_IN(z0, z1, z2) → c15(U5'(f55_in(z0, z1), z0, z1, z2), F55_IN(z0, z1))
F1_IN(.(0, .(s(0), z0))) → c(F28_IN(z0))
F28_IN(z0) → c(F1_IN(.(s(0), z0)))
F1_IN(.(0, .(0, z0))) → c3(F36_IN(z0))
F1_IN(.(s(z0), .(s(z1), z2))) → c4(F51_IN(z0, z1, z2))
F55_IN(s(z0), s(z1)) → c13(F55_IN(z0, z1))
U5'(f55_out1, z0, z1, z2) → c16(F1_IN(.(s(z1), z2)))
F36_IN(z0) → c22(F1_IN(.(0, z0)))
F1_IN(.(0, .(s(0), z0))) → c
F28_IN(z0) → c
S tuples:
F51_IN(z0, z1, z2) → c15(U5'(f55_in(z0, z1), z0, z1, z2), F55_IN(z0, z1))
F1_IN(.(0, .(s(0), z0))) → c(F28_IN(z0))
F28_IN(z0) → c(F1_IN(.(s(0), z0)))
F1_IN(.(0, .(0, z0))) → c3(F36_IN(z0))
F1_IN(.(s(z0), .(s(z1), z2))) → c4(F51_IN(z0, z1, z2))
F55_IN(s(z0), s(z1)) → c13(F55_IN(z0, z1))
U5'(f55_out1, z0, z1, z2) → c16(F1_IN(.(s(z1), z2)))
F36_IN(z0) → c22(F1_IN(.(0, z0)))
F1_IN(.(0, .(s(0), z0))) → c
F28_IN(z0) → c
K tuples:none
Defined Rule Symbols:
f1_in, U1, U2, U3, f55_in, U4, f51_in, U5, U6, f28_in, U7, f36_in, U8
Defined Pair Symbols:
F51_IN, F1_IN, F28_IN, F55_IN, U5', F36_IN
Compound Symbols:
c15, c, c3, c4, c13, c16, c22, c
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F1_IN(.(0, .(s(0), z0))) → c(F28_IN(z0))
F1_IN(.(0, .(s(0), z0))) → c
We considered the (Usable) Rules:
f55_in(0, s(0)) → f55_out1
f55_in(0, 0) → f55_out1
f55_in(s(z0), s(z1)) → U4(f55_in(z0, z1), s(z0), s(z1))
U4(f55_out1, s(z0), s(z1)) → f55_out1
And the Tuples:
F51_IN(z0, z1, z2) → c15(U5'(f55_in(z0, z1), z0, z1, z2), F55_IN(z0, z1))
F1_IN(.(0, .(s(0), z0))) → c(F28_IN(z0))
F28_IN(z0) → c(F1_IN(.(s(0), z0)))
F1_IN(.(0, .(0, z0))) → c3(F36_IN(z0))
F1_IN(.(s(z0), .(s(z1), z2))) → c4(F51_IN(z0, z1, z2))
F55_IN(s(z0), s(z1)) → c13(F55_IN(z0, z1))
U5'(f55_out1, z0, z1, z2) → c16(F1_IN(.(s(z1), z2)))
F36_IN(z0) → c22(F1_IN(.(0, z0)))
F1_IN(.(0, .(s(0), z0))) → c
F28_IN(z0) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = x1
POL(0) = [2]
POL(F1_IN(x1)) = x1
POL(F28_IN(x1)) = 0
POL(F36_IN(x1)) = [2]
POL(F51_IN(x1, x2, x3)) = 0
POL(F55_IN(x1, x2)) = 0
POL(U4(x1, x2, x3)) = 0
POL(U5'(x1, x2, x3, x4)) = 0
POL(c) = 0
POL(c(x1)) = x1
POL(c13(x1)) = x1
POL(c15(x1, x2)) = x1 + x2
POL(c16(x1)) = x1
POL(c22(x1)) = x1
POL(c3(x1)) = x1
POL(c4(x1)) = x1
POL(f55_in(x1, x2)) = 0
POL(f55_out1) = 0
POL(s(x1)) = 0
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(0, .(s(0), z0))) → U1(f28_in(z0), .(0, .(s(0), z0)))
f1_in(.(0, .(0, z0))) → U2(f36_in(z0), .(0, .(0, z0)))
f1_in(.(s(z0), .(s(z1), z2))) → U3(f51_in(z0, z1, z2), .(s(z0), .(s(z1), z2)))
U1(f28_out1, .(0, .(s(0), z0))) → f1_out1
U1(f28_out2, .(0, .(s(0), z0))) → f1_out1
U1(f28_out3, .(0, .(s(0), z0))) → f1_out1
U2(f36_out1, .(0, .(0, z0))) → f1_out1
U2(f36_out2, .(0, .(0, z0))) → f1_out1
U3(f51_out1, .(s(z0), .(s(z1), z2))) → f1_out1
f55_in(0, s(0)) → f55_out1
f55_in(0, 0) → f55_out1
f55_in(s(z0), s(z1)) → U4(f55_in(z0, z1), s(z0), s(z1))
U4(f55_out1, s(z0), s(z1)) → f55_out1
f51_in(z0, z1, z2) → U5(f55_in(z0, z1), z0, z1, z2)
U5(f55_out1, z0, z1, z2) → U6(f1_in(.(s(z1), z2)), z0, z1, z2)
U6(f1_out1, z0, z1, z2) → f51_out1
f28_in(z0) → U7(f1_in(.(s(0), z0)), f31_in(z0), z0)
U7(f1_out1, z0, z1) → f28_out1
U7(z0, f31_out1, z1) → f28_out2
U7(z0, f31_out2, z1) → f28_out3
f36_in(z0) → U8(f1_in(.(0, z0)), f41_in(z0), z0)
U8(f1_out1, z0, z1) → f36_out1
U8(z0, f41_out1, z1) → f36_out2
Tuples:
F51_IN(z0, z1, z2) → c15(U5'(f55_in(z0, z1), z0, z1, z2), F55_IN(z0, z1))
F1_IN(.(0, .(s(0), z0))) → c(F28_IN(z0))
F28_IN(z0) → c(F1_IN(.(s(0), z0)))
F1_IN(.(0, .(0, z0))) → c3(F36_IN(z0))
F1_IN(.(s(z0), .(s(z1), z2))) → c4(F51_IN(z0, z1, z2))
F55_IN(s(z0), s(z1)) → c13(F55_IN(z0, z1))
U5'(f55_out1, z0, z1, z2) → c16(F1_IN(.(s(z1), z2)))
F36_IN(z0) → c22(F1_IN(.(0, z0)))
F1_IN(.(0, .(s(0), z0))) → c
F28_IN(z0) → c
S tuples:
F51_IN(z0, z1, z2) → c15(U5'(f55_in(z0, z1), z0, z1, z2), F55_IN(z0, z1))
F28_IN(z0) → c(F1_IN(.(s(0), z0)))
F1_IN(.(0, .(0, z0))) → c3(F36_IN(z0))
F1_IN(.(s(z0), .(s(z1), z2))) → c4(F51_IN(z0, z1, z2))
F55_IN(s(z0), s(z1)) → c13(F55_IN(z0, z1))
U5'(f55_out1, z0, z1, z2) → c16(F1_IN(.(s(z1), z2)))
F36_IN(z0) → c22(F1_IN(.(0, z0)))
F28_IN(z0) → c
K tuples:
F1_IN(.(0, .(s(0), z0))) → c(F28_IN(z0))
F1_IN(.(0, .(s(0), z0))) → c
Defined Rule Symbols:
f1_in, U1, U2, U3, f55_in, U4, f51_in, U5, U6, f28_in, U7, f36_in, U8
Defined Pair Symbols:
F51_IN, F1_IN, F28_IN, F55_IN, U5', F36_IN
Compound Symbols:
c15, c, c3, c4, c13, c16, c22, c
(21) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F28_IN(z0) → c(F1_IN(.(s(0), z0)))
F28_IN(z0) → c
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(0, .(s(0), z0))) → U1(f28_in(z0), .(0, .(s(0), z0)))
f1_in(.(0, .(0, z0))) → U2(f36_in(z0), .(0, .(0, z0)))
f1_in(.(s(z0), .(s(z1), z2))) → U3(f51_in(z0, z1, z2), .(s(z0), .(s(z1), z2)))
U1(f28_out1, .(0, .(s(0), z0))) → f1_out1
U1(f28_out2, .(0, .(s(0), z0))) → f1_out1
U1(f28_out3, .(0, .(s(0), z0))) → f1_out1
U2(f36_out1, .(0, .(0, z0))) → f1_out1
U2(f36_out2, .(0, .(0, z0))) → f1_out1
U3(f51_out1, .(s(z0), .(s(z1), z2))) → f1_out1
f55_in(0, s(0)) → f55_out1
f55_in(0, 0) → f55_out1
f55_in(s(z0), s(z1)) → U4(f55_in(z0, z1), s(z0), s(z1))
U4(f55_out1, s(z0), s(z1)) → f55_out1
f51_in(z0, z1, z2) → U5(f55_in(z0, z1), z0, z1, z2)
U5(f55_out1, z0, z1, z2) → U6(f1_in(.(s(z1), z2)), z0, z1, z2)
U6(f1_out1, z0, z1, z2) → f51_out1
f28_in(z0) → U7(f1_in(.(s(0), z0)), f31_in(z0), z0)
U7(f1_out1, z0, z1) → f28_out1
U7(z0, f31_out1, z1) → f28_out2
U7(z0, f31_out2, z1) → f28_out3
f36_in(z0) → U8(f1_in(.(0, z0)), f41_in(z0), z0)
U8(f1_out1, z0, z1) → f36_out1
U8(z0, f41_out1, z1) → f36_out2
Tuples:
F51_IN(z0, z1, z2) → c15(U5'(f55_in(z0, z1), z0, z1, z2), F55_IN(z0, z1))
F1_IN(.(0, .(s(0), z0))) → c(F28_IN(z0))
F28_IN(z0) → c(F1_IN(.(s(0), z0)))
F1_IN(.(0, .(0, z0))) → c3(F36_IN(z0))
F1_IN(.(s(z0), .(s(z1), z2))) → c4(F51_IN(z0, z1, z2))
F55_IN(s(z0), s(z1)) → c13(F55_IN(z0, z1))
U5'(f55_out1, z0, z1, z2) → c16(F1_IN(.(s(z1), z2)))
F36_IN(z0) → c22(F1_IN(.(0, z0)))
F1_IN(.(0, .(s(0), z0))) → c
F28_IN(z0) → c
S tuples:
F51_IN(z0, z1, z2) → c15(U5'(f55_in(z0, z1), z0, z1, z2), F55_IN(z0, z1))
F1_IN(.(0, .(0, z0))) → c3(F36_IN(z0))
F1_IN(.(s(z0), .(s(z1), z2))) → c4(F51_IN(z0, z1, z2))
F55_IN(s(z0), s(z1)) → c13(F55_IN(z0, z1))
U5'(f55_out1, z0, z1, z2) → c16(F1_IN(.(s(z1), z2)))
F36_IN(z0) → c22(F1_IN(.(0, z0)))
K tuples:
F1_IN(.(0, .(s(0), z0))) → c(F28_IN(z0))
F1_IN(.(0, .(s(0), z0))) → c
F28_IN(z0) → c(F1_IN(.(s(0), z0)))
F28_IN(z0) → c
Defined Rule Symbols:
f1_in, U1, U2, U3, f55_in, U4, f51_in, U5, U6, f28_in, U7, f36_in, U8
Defined Pair Symbols:
F51_IN, F1_IN, F28_IN, F55_IN, U5', F36_IN
Compound Symbols:
c15, c, c3, c4, c13, c16, c22, c