(0) Obligation:

Clauses:

app1(.(X, Xs), Ys, .(X, Zs)) :- app1(Xs, Ys, Zs).
app1([], Ys, Ys).
app2(.(X, Xs), Ys, .(X, Zs)) :- app2(Xs, Ys, Zs).
app2([], Ys, Ys).

Query: app2(a,g,g)

(1) LPReorderTransformerProof (EQUIVALENT transformation)

Reordered facts before rules in definite LP [PROLOG].

(2) Obligation:

Clauses:

app1([], Ys, Ys).
app2([], Ys, Ys).
app1(.(X, Xs), Ys, .(X, Zs)) :- app1(Xs, Ys, Zs).
app2(.(X, Xs), Ys, .(X, Zs)) :- app2(Xs, Ys, Zs).

Query: app2(a,g,g)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z0) → f2_out1([])
f2_in(.(z0, z1), .(z0, z1)) → U1(f2_in(.(z0, z1), z1), .(z0, z1), .(z0, z1))
f2_in(z0, .(z1, z2)) → U2(f2_in(z0, z2), z0, .(z1, z2))
U1(f2_out1(z0), .(z1, z2), .(z1, z2)) → f2_out1(.(z1, z0))
U2(f2_out1(z0), z1, .(z2, z3)) → f2_out1(.(z2, z0))
Tuples:

F2_IN(.(z0, z1), .(z0, z1)) → c1(U1'(f2_in(.(z0, z1), z1), .(z0, z1), .(z0, z1)), F2_IN(.(z0, z1), z1))
F2_IN(z0, .(z1, z2)) → c2(U2'(f2_in(z0, z2), z0, .(z1, z2)), F2_IN(z0, z2))
S tuples:

F2_IN(.(z0, z1), .(z0, z1)) → c1(U1'(f2_in(.(z0, z1), z1), .(z0, z1), .(z0, z1)), F2_IN(.(z0, z1), z1))
F2_IN(z0, .(z1, z2)) → c2(U2'(f2_in(z0, z2), z0, .(z1, z2)), F2_IN(z0, z2))
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2

Defined Pair Symbols:

F2_IN

Compound Symbols:

c1, c2

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z0) → f2_out1([])
f2_in(.(z0, z1), .(z0, z1)) → U1(f2_in(.(z0, z1), z1), .(z0, z1), .(z0, z1))
f2_in(z0, .(z1, z2)) → U2(f2_in(z0, z2), z0, .(z1, z2))
U1(f2_out1(z0), .(z1, z2), .(z1, z2)) → f2_out1(.(z1, z0))
U2(f2_out1(z0), z1, .(z2, z3)) → f2_out1(.(z2, z0))
Tuples:

F2_IN(.(z0, z1), .(z0, z1)) → c1(F2_IN(.(z0, z1), z1))
F2_IN(z0, .(z1, z2)) → c2(F2_IN(z0, z2))
S tuples:

F2_IN(.(z0, z1), .(z0, z1)) → c1(F2_IN(.(z0, z1), z1))
F2_IN(z0, .(z1, z2)) → c2(F2_IN(z0, z2))
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2

Defined Pair Symbols:

F2_IN

Compound Symbols:

c1, c2

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(.(z0, z1), .(z0, z1)) → c1(F2_IN(.(z0, z1), z1))
F2_IN(z0, .(z1, z2)) → c2(F2_IN(z0, z2))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(.(z0, z1), .(z0, z1)) → c1(F2_IN(.(z0, z1), z1))
F2_IN(z0, .(z1, z2)) → c2(F2_IN(z0, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1] + x2   
POL(F2_IN(x1, x2)) = x2   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z0) → f2_out1([])
f2_in(.(z0, z1), .(z0, z1)) → U1(f2_in(.(z0, z1), z1), .(z0, z1), .(z0, z1))
f2_in(z0, .(z1, z2)) → U2(f2_in(z0, z2), z0, .(z1, z2))
U1(f2_out1(z0), .(z1, z2), .(z1, z2)) → f2_out1(.(z1, z0))
U2(f2_out1(z0), z1, .(z2, z3)) → f2_out1(.(z2, z0))
Tuples:

F2_IN(.(z0, z1), .(z0, z1)) → c1(F2_IN(.(z0, z1), z1))
F2_IN(z0, .(z1, z2)) → c2(F2_IN(z0, z2))
S tuples:none
K tuples:

F2_IN(.(z0, z1), .(z0, z1)) → c1(F2_IN(.(z0, z1), z1))
F2_IN(z0, .(z1, z2)) → c2(F2_IN(z0, z2))
Defined Rule Symbols:

f2_in, U1, U2

Defined Pair Symbols:

F2_IN

Compound Symbols:

c1, c2

(9) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(10) BOUNDS(O(1), O(1))

(11) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z0) → f1_out1([])
f1_in(.(z0, .(z1, z2)), .(z0, .(z1, z2))) → U1(f1_in(.(z0, .(z1, z2)), z2), .(z0, .(z1, z2)), .(z0, .(z1, z2)))
f1_in(z0, .(z1, z0)) → f1_out1(.(z1, []))
f1_in(.(z0, z1), .(z2, .(z0, z1))) → U2(f1_in(.(z0, z1), z1), .(z0, z1), .(z2, .(z0, z1)))
f1_in(z0, .(z1, .(z2, z3))) → U3(f1_in(z0, z3), z0, .(z1, .(z2, z3)))
U1(f1_out1(z0), .(z1, .(z2, z3)), .(z1, .(z2, z3))) → f1_out1(.(z1, .(z2, z0)))
U2(f1_out1(z0), .(z1, z2), .(z3, .(z1, z2))) → f1_out1(.(z3, .(z1, z0)))
U3(f1_out1(z0), z1, .(z2, .(z3, z4))) → f1_out1(.(z2, .(z3, z0)))
Tuples:

F1_IN(.(z0, .(z1, z2)), .(z0, .(z1, z2))) → c1(U1'(f1_in(.(z0, .(z1, z2)), z2), .(z0, .(z1, z2)), .(z0, .(z1, z2))), F1_IN(.(z0, .(z1, z2)), z2))
F1_IN(.(z0, z1), .(z2, .(z0, z1))) → c3(U2'(f1_in(.(z0, z1), z1), .(z0, z1), .(z2, .(z0, z1))), F1_IN(.(z0, z1), z1))
F1_IN(z0, .(z1, .(z2, z3))) → c4(U3'(f1_in(z0, z3), z0, .(z1, .(z2, z3))), F1_IN(z0, z3))
S tuples:

F1_IN(.(z0, .(z1, z2)), .(z0, .(z1, z2))) → c1(U1'(f1_in(.(z0, .(z1, z2)), z2), .(z0, .(z1, z2)), .(z0, .(z1, z2))), F1_IN(.(z0, .(z1, z2)), z2))
F1_IN(.(z0, z1), .(z2, .(z0, z1))) → c3(U2'(f1_in(.(z0, z1), z1), .(z0, z1), .(z2, .(z0, z1))), F1_IN(.(z0, z1), z1))
F1_IN(z0, .(z1, .(z2, z3))) → c4(U3'(f1_in(z0, z3), z0, .(z1, .(z2, z3))), F1_IN(z0, z3))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, U3

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1, c3, c4

(13) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 3 trailing tuple parts

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z0) → f1_out1([])
f1_in(.(z0, .(z1, z2)), .(z0, .(z1, z2))) → U1(f1_in(.(z0, .(z1, z2)), z2), .(z0, .(z1, z2)), .(z0, .(z1, z2)))
f1_in(z0, .(z1, z0)) → f1_out1(.(z1, []))
f1_in(.(z0, z1), .(z2, .(z0, z1))) → U2(f1_in(.(z0, z1), z1), .(z0, z1), .(z2, .(z0, z1)))
f1_in(z0, .(z1, .(z2, z3))) → U3(f1_in(z0, z3), z0, .(z1, .(z2, z3)))
U1(f1_out1(z0), .(z1, .(z2, z3)), .(z1, .(z2, z3))) → f1_out1(.(z1, .(z2, z0)))
U2(f1_out1(z0), .(z1, z2), .(z3, .(z1, z2))) → f1_out1(.(z3, .(z1, z0)))
U3(f1_out1(z0), z1, .(z2, .(z3, z4))) → f1_out1(.(z2, .(z3, z0)))
Tuples:

F1_IN(.(z0, .(z1, z2)), .(z0, .(z1, z2))) → c1(F1_IN(.(z0, .(z1, z2)), z2))
F1_IN(.(z0, z1), .(z2, .(z0, z1))) → c3(F1_IN(.(z0, z1), z1))
F1_IN(z0, .(z1, .(z2, z3))) → c4(F1_IN(z0, z3))
S tuples:

F1_IN(.(z0, .(z1, z2)), .(z0, .(z1, z2))) → c1(F1_IN(.(z0, .(z1, z2)), z2))
F1_IN(.(z0, z1), .(z2, .(z0, z1))) → c3(F1_IN(.(z0, z1), z1))
F1_IN(z0, .(z1, .(z2, z3))) → c4(F1_IN(z0, z3))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, U3

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1, c3, c4