(0) Obligation:

Clauses:

p(X, X).
p(f(X), g(Y)) :- ','(p(f(X), f(Z)), p(Z, g(Y))).

Query: p(g,a)

(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → f1_out1(z0)
f1_in(f(z0)) → U1(f13_in(z0), f(z0))
f1_in(f(z0)) → U2(f13_in(z0), f(z0))
U1(f13_out1(z0, z1), f(z2)) → f1_out1(g(z1))
U2(f13_out1(z0, z1), f(z2)) → f1_out1(g(z1))
f17_in(z0) → f17_out1(z0)
f13_in(z0) → U3(f17_in(z0), z0)
U3(f17_out1(z0), z1) → U4(f1_in(z0), z1, z0)
U4(f1_out1(g(z0)), z1, z2) → f13_out1(z2, z0)
Tuples:

F1_IN(f(z0)) → c1(U1'(f13_in(z0), f(z0)), F13_IN(z0))
F1_IN(f(z0)) → c2(U2'(f13_in(z0), f(z0)), F13_IN(z0))
F13_IN(z0) → c6(U3'(f17_in(z0), z0), F17_IN(z0))
U3'(f17_out1(z0), z1) → c7(U4'(f1_in(z0), z1, z0), F1_IN(z0))
S tuples:

F1_IN(f(z0)) → c1(U1'(f13_in(z0), f(z0)), F13_IN(z0))
F1_IN(f(z0)) → c2(U2'(f13_in(z0), f(z0)), F13_IN(z0))
F13_IN(z0) → c6(U3'(f17_in(z0), z0), F17_IN(z0))
U3'(f17_out1(z0), z1) → c7(U4'(f1_in(z0), z1, z0), F1_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f17_in, f13_in, U3, U4

Defined Pair Symbols:

F1_IN, F13_IN, U3'

Compound Symbols:

c1, c2, c6, c7

(3) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → f1_out1(z0)
f1_in(f(z0)) → U1(f13_in(z0), f(z0))
f1_in(f(z0)) → U2(f13_in(z0), f(z0))
U1(f13_out1(z0, z1), f(z2)) → f1_out1(g(z1))
U2(f13_out1(z0, z1), f(z2)) → f1_out1(g(z1))
f17_in(z0) → f17_out1(z0)
f13_in(z0) → U3(f17_in(z0), z0)
U3(f17_out1(z0), z1) → U4(f1_in(z0), z1, z0)
U4(f1_out1(g(z0)), z1, z2) → f13_out1(z2, z0)
Tuples:

F1_IN(f(z0)) → c1(F13_IN(z0))
F1_IN(f(z0)) → c2(F13_IN(z0))
F13_IN(z0) → c6(U3'(f17_in(z0), z0))
U3'(f17_out1(z0), z1) → c7(F1_IN(z0))
S tuples:

F1_IN(f(z0)) → c1(F13_IN(z0))
F1_IN(f(z0)) → c2(F13_IN(z0))
F13_IN(z0) → c6(U3'(f17_in(z0), z0))
U3'(f17_out1(z0), z1) → c7(F1_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f17_in, f13_in, U3, U4

Defined Pair Symbols:

F1_IN, F13_IN, U3'

Compound Symbols:

c1, c2, c6, c7

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F1_IN(f(z0)) → c1(F13_IN(z0))
F1_IN(f(z0)) → c2(F13_IN(z0))
We considered the (Usable) Rules:

f17_in(z0) → f17_out1(z0)
And the Tuples:

F1_IN(f(z0)) → c1(F13_IN(z0))
F1_IN(f(z0)) → c2(F13_IN(z0))
F13_IN(z0) → c6(U3'(f17_in(z0), z0))
U3'(f17_out1(z0), z1) → c7(F1_IN(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F13_IN(x1)) = [2]x1   
POL(F1_IN(x1)) = [2]x1   
POL(U3'(x1, x2)) = [2]x1   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   
POL(f(x1)) = [1] + x1   
POL(f17_in(x1)) = x1   
POL(f17_out1(x1)) = x1   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → f1_out1(z0)
f1_in(f(z0)) → U1(f13_in(z0), f(z0))
f1_in(f(z0)) → U2(f13_in(z0), f(z0))
U1(f13_out1(z0, z1), f(z2)) → f1_out1(g(z1))
U2(f13_out1(z0, z1), f(z2)) → f1_out1(g(z1))
f17_in(z0) → f17_out1(z0)
f13_in(z0) → U3(f17_in(z0), z0)
U3(f17_out1(z0), z1) → U4(f1_in(z0), z1, z0)
U4(f1_out1(g(z0)), z1, z2) → f13_out1(z2, z0)
Tuples:

F1_IN(f(z0)) → c1(F13_IN(z0))
F1_IN(f(z0)) → c2(F13_IN(z0))
F13_IN(z0) → c6(U3'(f17_in(z0), z0))
U3'(f17_out1(z0), z1) → c7(F1_IN(z0))
S tuples:

F13_IN(z0) → c6(U3'(f17_in(z0), z0))
U3'(f17_out1(z0), z1) → c7(F1_IN(z0))
K tuples:

F1_IN(f(z0)) → c1(F13_IN(z0))
F1_IN(f(z0)) → c2(F13_IN(z0))
Defined Rule Symbols:

f1_in, U1, U2, f17_in, f13_in, U3, U4

Defined Pair Symbols:

F1_IN, F13_IN, U3'

Compound Symbols:

c1, c2, c6, c7

(7) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F13_IN(z0) → c6(U3'(f17_in(z0), z0))
U3'(f17_out1(z0), z1) → c7(F1_IN(z0))
U3'(f17_out1(z0), z1) → c7(F1_IN(z0))
F1_IN(f(z0)) → c1(F13_IN(z0))
F1_IN(f(z0)) → c2(F13_IN(z0))
Now S is empty

(8) BOUNDS(O(1), O(1))

(9) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → f2_out1(z0)
f2_in(f(z0)) → U1(f16_in(z0), f(z0))
f2_in(f(z0)) → U2(f31_in(z0), f(z0))
U1(f16_out1(z0), f(z1)) → f2_out1(g(z0))
U1(f16_out2(z0, z1), f(z2)) → f2_out1(g(z1))
U2(f31_out1(z0), f(z1)) → f2_out1(g(z0))
U2(f31_out2(z0, z1), f(z2)) → f2_out1(g(z1))
f16_in(z0) → U3(f2_in(z0), f20_in(z0), z0)
U3(f2_out1(g(z0)), z1, z2) → f16_out1(z0)
U3(z0, f20_out1(z1, z2), z3) → f16_out2(z1, z2)
f31_in(z0) → U4(f2_in(z0), f33_in(z0), z0)
U4(f2_out1(g(z0)), z1, z2) → f31_out1(z0)
U4(z0, f33_out1(z1, z2), z3) → f31_out2(z1, z2)
Tuples:

F2_IN(f(z0)) → c1(U1'(f16_in(z0), f(z0)), F16_IN(z0))
F2_IN(f(z0)) → c2(U2'(f31_in(z0), f(z0)), F31_IN(z0))
F16_IN(z0) → c7(U3'(f2_in(z0), f20_in(z0), z0), F2_IN(z0))
F31_IN(z0) → c10(U4'(f2_in(z0), f33_in(z0), z0), F2_IN(z0))
S tuples:

F2_IN(f(z0)) → c1(U1'(f16_in(z0), f(z0)), F16_IN(z0))
F2_IN(f(z0)) → c2(U2'(f31_in(z0), f(z0)), F31_IN(z0))
F16_IN(z0) → c7(U3'(f2_in(z0), f20_in(z0), z0), F2_IN(z0))
F31_IN(z0) → c10(U4'(f2_in(z0), f33_in(z0), z0), F2_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2, f16_in, U3, f31_in, U4

Defined Pair Symbols:

F2_IN, F16_IN, F31_IN

Compound Symbols:

c1, c2, c7, c10

(11) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → f2_out1(z0)
f2_in(f(z0)) → U1(f16_in(z0), f(z0))
f2_in(f(z0)) → U2(f31_in(z0), f(z0))
U1(f16_out1(z0), f(z1)) → f2_out1(g(z0))
U1(f16_out2(z0, z1), f(z2)) → f2_out1(g(z1))
U2(f31_out1(z0), f(z1)) → f2_out1(g(z0))
U2(f31_out2(z0, z1), f(z2)) → f2_out1(g(z1))
f16_in(z0) → U3(f2_in(z0), f20_in(z0), z0)
U3(f2_out1(g(z0)), z1, z2) → f16_out1(z0)
U3(z0, f20_out1(z1, z2), z3) → f16_out2(z1, z2)
f31_in(z0) → U4(f2_in(z0), f33_in(z0), z0)
U4(f2_out1(g(z0)), z1, z2) → f31_out1(z0)
U4(z0, f33_out1(z1, z2), z3) → f31_out2(z1, z2)
Tuples:

F2_IN(f(z0)) → c1(F16_IN(z0))
F2_IN(f(z0)) → c2(F31_IN(z0))
F16_IN(z0) → c7(F2_IN(z0))
F31_IN(z0) → c10(F2_IN(z0))
S tuples:

F2_IN(f(z0)) → c1(F16_IN(z0))
F2_IN(f(z0)) → c2(F31_IN(z0))
F16_IN(z0) → c7(F2_IN(z0))
F31_IN(z0) → c10(F2_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2, f16_in, U3, f31_in, U4

Defined Pair Symbols:

F2_IN, F16_IN, F31_IN

Compound Symbols:

c1, c2, c7, c10

(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(f(z0)) → c1(F16_IN(z0))
F2_IN(f(z0)) → c2(F31_IN(z0))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(f(z0)) → c1(F16_IN(z0))
F2_IN(f(z0)) → c2(F31_IN(z0))
F16_IN(z0) → c7(F2_IN(z0))
F31_IN(z0) → c10(F2_IN(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F16_IN(x1)) = x1   
POL(F2_IN(x1)) = x1   
POL(F31_IN(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c2(x1)) = x1   
POL(c7(x1)) = x1   
POL(f(x1)) = [1] + x1   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → f2_out1(z0)
f2_in(f(z0)) → U1(f16_in(z0), f(z0))
f2_in(f(z0)) → U2(f31_in(z0), f(z0))
U1(f16_out1(z0), f(z1)) → f2_out1(g(z0))
U1(f16_out2(z0, z1), f(z2)) → f2_out1(g(z1))
U2(f31_out1(z0), f(z1)) → f2_out1(g(z0))
U2(f31_out2(z0, z1), f(z2)) → f2_out1(g(z1))
f16_in(z0) → U3(f2_in(z0), f20_in(z0), z0)
U3(f2_out1(g(z0)), z1, z2) → f16_out1(z0)
U3(z0, f20_out1(z1, z2), z3) → f16_out2(z1, z2)
f31_in(z0) → U4(f2_in(z0), f33_in(z0), z0)
U4(f2_out1(g(z0)), z1, z2) → f31_out1(z0)
U4(z0, f33_out1(z1, z2), z3) → f31_out2(z1, z2)
Tuples:

F2_IN(f(z0)) → c1(F16_IN(z0))
F2_IN(f(z0)) → c2(F31_IN(z0))
F16_IN(z0) → c7(F2_IN(z0))
F31_IN(z0) → c10(F2_IN(z0))
S tuples:

F16_IN(z0) → c7(F2_IN(z0))
F31_IN(z0) → c10(F2_IN(z0))
K tuples:

F2_IN(f(z0)) → c1(F16_IN(z0))
F2_IN(f(z0)) → c2(F31_IN(z0))
Defined Rule Symbols:

f2_in, U1, U2, f16_in, U3, f31_in, U4

Defined Pair Symbols:

F2_IN, F16_IN, F31_IN

Compound Symbols:

c1, c2, c7, c10