(0) Obligation:

Clauses:

f(0, Y, 0).
f(s(X), Y, Z) :- ','(f(X, Y, U), f(U, Y, Z)).

Query: f(g,a,a)

(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1(0)
f2_in(s(z0)) → U1(f20_in(z0), s(z0))
U1(f20_out1(z0, z1), s(z2)) → f2_out1(z1)
f23_in(0) → f23_out1(0)
f23_in(s(z0)) → U2(f38_in(z0), s(z0))
U2(f38_out1(z0, z1), s(z2)) → f23_out1(z1)
f20_in(z0) → U3(f23_in(z0), z0)
U3(f23_out1(z0), z1) → U4(f2_in(z0), z1, z0)
U4(f2_out1(z0), z1, z2) → f20_out1(z2, z0)
f38_in(z0) → U5(f23_in(z0), z0)
U5(f23_out1(z0), z1) → U6(f23_in(z0), z1, z0)
U6(f23_out1(z0), z1, z2) → f38_out1(z2, z0)
Tuples:

F2_IN(s(z0)) → c1(U1'(f20_in(z0), s(z0)), F20_IN(z0))
F23_IN(s(z0)) → c4(U2'(f38_in(z0), s(z0)), F38_IN(z0))
F20_IN(z0) → c6(U3'(f23_in(z0), z0), F23_IN(z0))
U3'(f23_out1(z0), z1) → c7(U4'(f2_in(z0), z1, z0), F2_IN(z0))
F38_IN(z0) → c9(U5'(f23_in(z0), z0), F23_IN(z0))
U5'(f23_out1(z0), z1) → c10(U6'(f23_in(z0), z1, z0), F23_IN(z0))
S tuples:

F2_IN(s(z0)) → c1(U1'(f20_in(z0), s(z0)), F20_IN(z0))
F23_IN(s(z0)) → c4(U2'(f38_in(z0), s(z0)), F38_IN(z0))
F20_IN(z0) → c6(U3'(f23_in(z0), z0), F23_IN(z0))
U3'(f23_out1(z0), z1) → c7(U4'(f2_in(z0), z1, z0), F2_IN(z0))
F38_IN(z0) → c9(U5'(f23_in(z0), z0), F23_IN(z0))
U5'(f23_out1(z0), z1) → c10(U6'(f23_in(z0), z1, z0), F23_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f23_in, U2, f20_in, U3, U4, f38_in, U5, U6

Defined Pair Symbols:

F2_IN, F23_IN, F20_IN, U3', F38_IN, U5'

Compound Symbols:

c1, c4, c6, c7, c9, c10

(3) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1(0)
f2_in(s(z0)) → U1(f20_in(z0), s(z0))
U1(f20_out1(z0, z1), s(z2)) → f2_out1(z1)
f23_in(0) → f23_out1(0)
f23_in(s(z0)) → U2(f38_in(z0), s(z0))
U2(f38_out1(z0, z1), s(z2)) → f23_out1(z1)
f20_in(z0) → U3(f23_in(z0), z0)
U3(f23_out1(z0), z1) → U4(f2_in(z0), z1, z0)
U4(f2_out1(z0), z1, z2) → f20_out1(z2, z0)
f38_in(z0) → U5(f23_in(z0), z0)
U5(f23_out1(z0), z1) → U6(f23_in(z0), z1, z0)
U6(f23_out1(z0), z1, z2) → f38_out1(z2, z0)
Tuples:

F20_IN(z0) → c6(U3'(f23_in(z0), z0), F23_IN(z0))
F38_IN(z0) → c9(U5'(f23_in(z0), z0), F23_IN(z0))
F2_IN(s(z0)) → c1(F20_IN(z0))
F23_IN(s(z0)) → c4(F38_IN(z0))
U3'(f23_out1(z0), z1) → c7(F2_IN(z0))
U5'(f23_out1(z0), z1) → c10(F23_IN(z0))
S tuples:

F20_IN(z0) → c6(U3'(f23_in(z0), z0), F23_IN(z0))
F38_IN(z0) → c9(U5'(f23_in(z0), z0), F23_IN(z0))
F2_IN(s(z0)) → c1(F20_IN(z0))
F23_IN(s(z0)) → c4(F38_IN(z0))
U3'(f23_out1(z0), z1) → c7(F2_IN(z0))
U5'(f23_out1(z0), z1) → c10(F23_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f23_in, U2, f20_in, U3, U4, f38_in, U5, U6

Defined Pair Symbols:

F20_IN, F38_IN, F2_IN, F23_IN, U3', U5'

Compound Symbols:

c6, c9, c1, c4, c7, c10

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F20_IN(z0) → c6(U3'(f23_in(z0), z0), F23_IN(z0))
F38_IN(z0) → c9(U5'(f23_in(z0), z0), F23_IN(z0))
F2_IN(s(z0)) → c1(F20_IN(z0))
F23_IN(s(z0)) → c4(F38_IN(z0))
We considered the (Usable) Rules:

f23_in(0) → f23_out1(0)
f23_in(s(z0)) → U2(f38_in(z0), s(z0))
f38_in(z0) → U5(f23_in(z0), z0)
U2(f38_out1(z0, z1), s(z2)) → f23_out1(z1)
U5(f23_out1(z0), z1) → U6(f23_in(z0), z1, z0)
U6(f23_out1(z0), z1, z2) → f38_out1(z2, z0)
And the Tuples:

F20_IN(z0) → c6(U3'(f23_in(z0), z0), F23_IN(z0))
F38_IN(z0) → c9(U5'(f23_in(z0), z0), F23_IN(z0))
F2_IN(s(z0)) → c1(F20_IN(z0))
F23_IN(s(z0)) → c4(F38_IN(z0))
U3'(f23_out1(z0), z1) → c7(F2_IN(z0))
U5'(f23_out1(z0), z1) → c10(F23_IN(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F20_IN(x1)) = [1] + [2]x1   
POL(F23_IN(x1)) = x1   
POL(F2_IN(x1)) = [2]x1   
POL(F38_IN(x1)) = [1] + x1   
POL(U2(x1, x2)) = [2]x1   
POL(U3'(x1, x2)) = [2]x1   
POL(U5(x1, x2)) = [3]x1   
POL(U5'(x1, x2)) = [2]x1   
POL(U6(x1, x2, x3)) = [2]x1   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c7(x1)) = x1   
POL(c9(x1, x2)) = x1 + x2   
POL(f23_in(x1)) = 0   
POL(f23_out1(x1)) = x1   
POL(f38_in(x1)) = 0   
POL(f38_out1(x1, x2)) = x2   
POL(s(x1)) = [2] + x1   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1(0)
f2_in(s(z0)) → U1(f20_in(z0), s(z0))
U1(f20_out1(z0, z1), s(z2)) → f2_out1(z1)
f23_in(0) → f23_out1(0)
f23_in(s(z0)) → U2(f38_in(z0), s(z0))
U2(f38_out1(z0, z1), s(z2)) → f23_out1(z1)
f20_in(z0) → U3(f23_in(z0), z0)
U3(f23_out1(z0), z1) → U4(f2_in(z0), z1, z0)
U4(f2_out1(z0), z1, z2) → f20_out1(z2, z0)
f38_in(z0) → U5(f23_in(z0), z0)
U5(f23_out1(z0), z1) → U6(f23_in(z0), z1, z0)
U6(f23_out1(z0), z1, z2) → f38_out1(z2, z0)
Tuples:

F20_IN(z0) → c6(U3'(f23_in(z0), z0), F23_IN(z0))
F38_IN(z0) → c9(U5'(f23_in(z0), z0), F23_IN(z0))
F2_IN(s(z0)) → c1(F20_IN(z0))
F23_IN(s(z0)) → c4(F38_IN(z0))
U3'(f23_out1(z0), z1) → c7(F2_IN(z0))
U5'(f23_out1(z0), z1) → c10(F23_IN(z0))
S tuples:

U3'(f23_out1(z0), z1) → c7(F2_IN(z0))
U5'(f23_out1(z0), z1) → c10(F23_IN(z0))
K tuples:

F20_IN(z0) → c6(U3'(f23_in(z0), z0), F23_IN(z0))
F38_IN(z0) → c9(U5'(f23_in(z0), z0), F23_IN(z0))
F2_IN(s(z0)) → c1(F20_IN(z0))
F23_IN(s(z0)) → c4(F38_IN(z0))
Defined Rule Symbols:

f2_in, U1, f23_in, U2, f20_in, U3, U4, f38_in, U5, U6

Defined Pair Symbols:

F20_IN, F38_IN, F2_IN, F23_IN, U3', U5'

Compound Symbols:

c6, c9, c1, c4, c7, c10

(7) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

U3'(f23_out1(z0), z1) → c7(F2_IN(z0))
U5'(f23_out1(z0), z1) → c10(F23_IN(z0))
F2_IN(s(z0)) → c1(F20_IN(z0))
F23_IN(s(z0)) → c4(F38_IN(z0))
Now S is empty

(8) BOUNDS(O(1), O(1))

(9) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1(0)
f1_in(s(z0)) → U1(f9_in(z0), s(z0))
U1(f9_out1(z0, z1), s(z2)) → f1_out1(z1)
f9_in(0) → U2(f12_in, 0)
f9_in(s(z0)) → U3(f36_in(z0), s(z0))
U2(f12_out1(z0), 0) → f9_out1(0, z0)
U2(f12_out2(z0, z1), 0) → f9_out1(z0, z1)
U3(f36_out1(z0, z1, z2), s(z3)) → f9_out1(z1, z2)
f39_in(0) → f39_out1(0)
f39_in(s(z0)) → U4(f49_in(z0), s(z0))
U4(f49_out1(z0, z1), s(z2)) → f39_out1(z1)
f18_inf18_out1(0)
f36_in(z0) → U5(f39_in(z0), z0)
U5(f39_out1(z0), z1) → U6(f9_in(z0), z1, z0)
U6(f9_out1(z0, z1), z2, z3) → f36_out1(z3, z0, z1)
f49_in(z0) → U7(f39_in(z0), z0)
U7(f39_out1(z0), z1) → U8(f39_in(z0), z1, z0)
U8(f39_out1(z0), z1, z2) → f49_out1(z2, z0)
f12_inU9(f18_in, f19_in)
U9(f18_out1(z0), z1) → f12_out1(z0)
U9(z0, f19_out1(z1, z2)) → f12_out2(z1, z2)
Tuples:

F1_IN(s(z0)) → c1(U1'(f9_in(z0), s(z0)), F9_IN(z0))
F9_IN(0) → c3(U2'(f12_in, 0), F12_IN)
F9_IN(s(z0)) → c4(U3'(f36_in(z0), s(z0)), F36_IN(z0))
F39_IN(s(z0)) → c9(U4'(f49_in(z0), s(z0)), F49_IN(z0))
F36_IN(z0) → c12(U5'(f39_in(z0), z0), F39_IN(z0))
U5'(f39_out1(z0), z1) → c13(U6'(f9_in(z0), z1, z0), F9_IN(z0))
F49_IN(z0) → c15(U7'(f39_in(z0), z0), F39_IN(z0))
U7'(f39_out1(z0), z1) → c16(U8'(f39_in(z0), z1, z0), F39_IN(z0))
F12_INc18(U9'(f18_in, f19_in), F18_IN)
S tuples:

F1_IN(s(z0)) → c1(U1'(f9_in(z0), s(z0)), F9_IN(z0))
F9_IN(0) → c3(U2'(f12_in, 0), F12_IN)
F9_IN(s(z0)) → c4(U3'(f36_in(z0), s(z0)), F36_IN(z0))
F39_IN(s(z0)) → c9(U4'(f49_in(z0), s(z0)), F49_IN(z0))
F36_IN(z0) → c12(U5'(f39_in(z0), z0), F39_IN(z0))
U5'(f39_out1(z0), z1) → c13(U6'(f9_in(z0), z1, z0), F9_IN(z0))
F49_IN(z0) → c15(U7'(f39_in(z0), z0), F39_IN(z0))
U7'(f39_out1(z0), z1) → c16(U8'(f39_in(z0), z1, z0), F39_IN(z0))
F12_INc18(U9'(f18_in, f19_in), F18_IN)
K tuples:none
Defined Rule Symbols:

f1_in, U1, f9_in, U2, U3, f39_in, U4, f18_in, f36_in, U5, U6, f49_in, U7, U8, f12_in, U9

Defined Pair Symbols:

F1_IN, F9_IN, F39_IN, F36_IN, U5', F49_IN, U7', F12_IN

Compound Symbols:

c1, c3, c4, c9, c12, c13, c15, c16, c18

(11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1(0)
f1_in(s(z0)) → U1(f9_in(z0), s(z0))
U1(f9_out1(z0, z1), s(z2)) → f1_out1(z1)
f9_in(0) → U2(f12_in, 0)
f9_in(s(z0)) → U3(f36_in(z0), s(z0))
U2(f12_out1(z0), 0) → f9_out1(0, z0)
U2(f12_out2(z0, z1), 0) → f9_out1(z0, z1)
U3(f36_out1(z0, z1, z2), s(z3)) → f9_out1(z1, z2)
f39_in(0) → f39_out1(0)
f39_in(s(z0)) → U4(f49_in(z0), s(z0))
U4(f49_out1(z0, z1), s(z2)) → f39_out1(z1)
f18_inf18_out1(0)
f36_in(z0) → U5(f39_in(z0), z0)
U5(f39_out1(z0), z1) → U6(f9_in(z0), z1, z0)
U6(f9_out1(z0, z1), z2, z3) → f36_out1(z3, z0, z1)
f49_in(z0) → U7(f39_in(z0), z0)
U7(f39_out1(z0), z1) → U8(f39_in(z0), z1, z0)
U8(f39_out1(z0), z1, z2) → f49_out1(z2, z0)
f12_inU9(f18_in, f19_in)
U9(f18_out1(z0), z1) → f12_out1(z0)
U9(z0, f19_out1(z1, z2)) → f12_out2(z1, z2)
Tuples:

F9_IN(s(z0)) → c4(U3'(f36_in(z0), s(z0)), F36_IN(z0))
F39_IN(s(z0)) → c9(U4'(f49_in(z0), s(z0)), F49_IN(z0))
F36_IN(z0) → c12(U5'(f39_in(z0), z0), F39_IN(z0))
U5'(f39_out1(z0), z1) → c13(U6'(f9_in(z0), z1, z0), F9_IN(z0))
F49_IN(z0) → c15(U7'(f39_in(z0), z0), F39_IN(z0))
U7'(f39_out1(z0), z1) → c16(U8'(f39_in(z0), z1, z0), F39_IN(z0))
F1_IN(s(z0)) → c(U1'(f9_in(z0), s(z0)))
F1_IN(s(z0)) → c(F9_IN(z0))
F9_IN(0) → c(U2'(f12_in, 0))
F9_IN(0) → c(F12_IN)
F12_INc(U9'(f18_in, f19_in))
F12_INc(F18_IN)
S tuples:

F9_IN(s(z0)) → c4(U3'(f36_in(z0), s(z0)), F36_IN(z0))
F39_IN(s(z0)) → c9(U4'(f49_in(z0), s(z0)), F49_IN(z0))
F36_IN(z0) → c12(U5'(f39_in(z0), z0), F39_IN(z0))
U5'(f39_out1(z0), z1) → c13(U6'(f9_in(z0), z1, z0), F9_IN(z0))
F49_IN(z0) → c15(U7'(f39_in(z0), z0), F39_IN(z0))
U7'(f39_out1(z0), z1) → c16(U8'(f39_in(z0), z1, z0), F39_IN(z0))
F1_IN(s(z0)) → c(U1'(f9_in(z0), s(z0)))
F1_IN(s(z0)) → c(F9_IN(z0))
F9_IN(0) → c(U2'(f12_in, 0))
F9_IN(0) → c(F12_IN)
F12_INc(U9'(f18_in, f19_in))
F12_INc(F18_IN)
K tuples:none
Defined Rule Symbols:

f1_in, U1, f9_in, U2, U3, f39_in, U4, f18_in, f36_in, U5, U6, f49_in, U7, U8, f12_in, U9

Defined Pair Symbols:

F9_IN, F39_IN, F36_IN, U5', F49_IN, U7', F1_IN, F12_IN

Compound Symbols:

c4, c9, c12, c13, c15, c16, c

(13) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 8 trailing tuple parts

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1(0)
f1_in(s(z0)) → U1(f9_in(z0), s(z0))
U1(f9_out1(z0, z1), s(z2)) → f1_out1(z1)
f9_in(0) → U2(f12_in, 0)
f9_in(s(z0)) → U3(f36_in(z0), s(z0))
U2(f12_out1(z0), 0) → f9_out1(0, z0)
U2(f12_out2(z0, z1), 0) → f9_out1(z0, z1)
U3(f36_out1(z0, z1, z2), s(z3)) → f9_out1(z1, z2)
f39_in(0) → f39_out1(0)
f39_in(s(z0)) → U4(f49_in(z0), s(z0))
U4(f49_out1(z0, z1), s(z2)) → f39_out1(z1)
f18_inf18_out1(0)
f36_in(z0) → U5(f39_in(z0), z0)
U5(f39_out1(z0), z1) → U6(f9_in(z0), z1, z0)
U6(f9_out1(z0, z1), z2, z3) → f36_out1(z3, z0, z1)
f49_in(z0) → U7(f39_in(z0), z0)
U7(f39_out1(z0), z1) → U8(f39_in(z0), z1, z0)
U8(f39_out1(z0), z1, z2) → f49_out1(z2, z0)
f12_inU9(f18_in, f19_in)
U9(f18_out1(z0), z1) → f12_out1(z0)
U9(z0, f19_out1(z1, z2)) → f12_out2(z1, z2)
Tuples:

F36_IN(z0) → c12(U5'(f39_in(z0), z0), F39_IN(z0))
F49_IN(z0) → c15(U7'(f39_in(z0), z0), F39_IN(z0))
F1_IN(s(z0)) → c(F9_IN(z0))
F9_IN(0) → c(F12_IN)
F9_IN(s(z0)) → c4(F36_IN(z0))
F39_IN(s(z0)) → c9(F49_IN(z0))
U5'(f39_out1(z0), z1) → c13(F9_IN(z0))
U7'(f39_out1(z0), z1) → c16(F39_IN(z0))
F1_IN(s(z0)) → c
F9_IN(0) → c
F12_INc
S tuples:

F36_IN(z0) → c12(U5'(f39_in(z0), z0), F39_IN(z0))
F49_IN(z0) → c15(U7'(f39_in(z0), z0), F39_IN(z0))
F1_IN(s(z0)) → c(F9_IN(z0))
F9_IN(0) → c(F12_IN)
F9_IN(s(z0)) → c4(F36_IN(z0))
F39_IN(s(z0)) → c9(F49_IN(z0))
U5'(f39_out1(z0), z1) → c13(F9_IN(z0))
U7'(f39_out1(z0), z1) → c16(F39_IN(z0))
F1_IN(s(z0)) → c
F9_IN(0) → c
F12_INc
K tuples:none
Defined Rule Symbols:

f1_in, U1, f9_in, U2, U3, f39_in, U4, f18_in, f36_in, U5, U6, f49_in, U7, U8, f12_in, U9

Defined Pair Symbols:

F36_IN, F49_IN, F1_IN, F9_IN, F39_IN, U5', U7', F12_IN

Compound Symbols:

c12, c15, c, c4, c9, c13, c16, c

(15) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F1_IN(s(z0)) → c(F9_IN(z0))
F1_IN(s(z0)) → c

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1(0)
f1_in(s(z0)) → U1(f9_in(z0), s(z0))
U1(f9_out1(z0, z1), s(z2)) → f1_out1(z1)
f9_in(0) → U2(f12_in, 0)
f9_in(s(z0)) → U3(f36_in(z0), s(z0))
U2(f12_out1(z0), 0) → f9_out1(0, z0)
U2(f12_out2(z0, z1), 0) → f9_out1(z0, z1)
U3(f36_out1(z0, z1, z2), s(z3)) → f9_out1(z1, z2)
f39_in(0) → f39_out1(0)
f39_in(s(z0)) → U4(f49_in(z0), s(z0))
U4(f49_out1(z0, z1), s(z2)) → f39_out1(z1)
f18_inf18_out1(0)
f36_in(z0) → U5(f39_in(z0), z0)
U5(f39_out1(z0), z1) → U6(f9_in(z0), z1, z0)
U6(f9_out1(z0, z1), z2, z3) → f36_out1(z3, z0, z1)
f49_in(z0) → U7(f39_in(z0), z0)
U7(f39_out1(z0), z1) → U8(f39_in(z0), z1, z0)
U8(f39_out1(z0), z1, z2) → f49_out1(z2, z0)
f12_inU9(f18_in, f19_in)
U9(f18_out1(z0), z1) → f12_out1(z0)
U9(z0, f19_out1(z1, z2)) → f12_out2(z1, z2)
Tuples:

F36_IN(z0) → c12(U5'(f39_in(z0), z0), F39_IN(z0))
F49_IN(z0) → c15(U7'(f39_in(z0), z0), F39_IN(z0))
F1_IN(s(z0)) → c(F9_IN(z0))
F9_IN(0) → c(F12_IN)
F9_IN(s(z0)) → c4(F36_IN(z0))
F39_IN(s(z0)) → c9(F49_IN(z0))
U5'(f39_out1(z0), z1) → c13(F9_IN(z0))
U7'(f39_out1(z0), z1) → c16(F39_IN(z0))
F1_IN(s(z0)) → c
F9_IN(0) → c
F12_INc
S tuples:

F36_IN(z0) → c12(U5'(f39_in(z0), z0), F39_IN(z0))
F49_IN(z0) → c15(U7'(f39_in(z0), z0), F39_IN(z0))
F9_IN(0) → c(F12_IN)
F9_IN(s(z0)) → c4(F36_IN(z0))
F39_IN(s(z0)) → c9(F49_IN(z0))
U5'(f39_out1(z0), z1) → c13(F9_IN(z0))
U7'(f39_out1(z0), z1) → c16(F39_IN(z0))
F9_IN(0) → c
F12_INc
K tuples:

F1_IN(s(z0)) → c(F9_IN(z0))
F1_IN(s(z0)) → c
Defined Rule Symbols:

f1_in, U1, f9_in, U2, U3, f39_in, U4, f18_in, f36_in, U5, U6, f49_in, U7, U8, f12_in, U9

Defined Pair Symbols:

F36_IN, F49_IN, F1_IN, F9_IN, F39_IN, U5', U7', F12_IN

Compound Symbols:

c12, c15, c, c4, c9, c13, c16, c

(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F9_IN(0) → c(F12_IN)
F9_IN(0) → c
We considered the (Usable) Rules:

f39_in(0) → f39_out1(0)
f39_in(s(z0)) → U4(f49_in(z0), s(z0))
f49_in(z0) → U7(f39_in(z0), z0)
U4(f49_out1(z0, z1), s(z2)) → f39_out1(z1)
U7(f39_out1(z0), z1) → U8(f39_in(z0), z1, z0)
U8(f39_out1(z0), z1, z2) → f49_out1(z2, z0)
And the Tuples:

F36_IN(z0) → c12(U5'(f39_in(z0), z0), F39_IN(z0))
F49_IN(z0) → c15(U7'(f39_in(z0), z0), F39_IN(z0))
F1_IN(s(z0)) → c(F9_IN(z0))
F9_IN(0) → c(F12_IN)
F9_IN(s(z0)) → c4(F36_IN(z0))
F39_IN(s(z0)) → c9(F49_IN(z0))
U5'(f39_out1(z0), z1) → c13(F9_IN(z0))
U7'(f39_out1(z0), z1) → c16(F39_IN(z0))
F1_IN(s(z0)) → c
F9_IN(0) → c
F12_INc
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F12_IN) = 0   
POL(F1_IN(x1)) = [1] + [2]x1   
POL(F36_IN(x1)) = [2]   
POL(F39_IN(x1)) = 0   
POL(F49_IN(x1)) = 0   
POL(F9_IN(x1)) = [2]   
POL(U4(x1, x2)) = 0   
POL(U5'(x1, x2)) = [2]   
POL(U7(x1, x2)) = [3] + [2]x2   
POL(U7'(x1, x2)) = 0   
POL(U8(x1, x2, x3)) = [3] + [3]x1   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c12(x1, x2)) = x1 + x2   
POL(c13(x1)) = x1   
POL(c15(x1, x2)) = x1 + x2   
POL(c16(x1)) = x1   
POL(c4(x1)) = x1   
POL(c9(x1)) = x1   
POL(f39_in(x1)) = 0   
POL(f39_out1(x1)) = [3]   
POL(f49_in(x1)) = [3] + [2]x1   
POL(f49_out1(x1, x2)) = [1]   
POL(s(x1)) = [2] + x1   

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1(0)
f1_in(s(z0)) → U1(f9_in(z0), s(z0))
U1(f9_out1(z0, z1), s(z2)) → f1_out1(z1)
f9_in(0) → U2(f12_in, 0)
f9_in(s(z0)) → U3(f36_in(z0), s(z0))
U2(f12_out1(z0), 0) → f9_out1(0, z0)
U2(f12_out2(z0, z1), 0) → f9_out1(z0, z1)
U3(f36_out1(z0, z1, z2), s(z3)) → f9_out1(z1, z2)
f39_in(0) → f39_out1(0)
f39_in(s(z0)) → U4(f49_in(z0), s(z0))
U4(f49_out1(z0, z1), s(z2)) → f39_out1(z1)
f18_inf18_out1(0)
f36_in(z0) → U5(f39_in(z0), z0)
U5(f39_out1(z0), z1) → U6(f9_in(z0), z1, z0)
U6(f9_out1(z0, z1), z2, z3) → f36_out1(z3, z0, z1)
f49_in(z0) → U7(f39_in(z0), z0)
U7(f39_out1(z0), z1) → U8(f39_in(z0), z1, z0)
U8(f39_out1(z0), z1, z2) → f49_out1(z2, z0)
f12_inU9(f18_in, f19_in)
U9(f18_out1(z0), z1) → f12_out1(z0)
U9(z0, f19_out1(z1, z2)) → f12_out2(z1, z2)
Tuples:

F36_IN(z0) → c12(U5'(f39_in(z0), z0), F39_IN(z0))
F49_IN(z0) → c15(U7'(f39_in(z0), z0), F39_IN(z0))
F1_IN(s(z0)) → c(F9_IN(z0))
F9_IN(0) → c(F12_IN)
F9_IN(s(z0)) → c4(F36_IN(z0))
F39_IN(s(z0)) → c9(F49_IN(z0))
U5'(f39_out1(z0), z1) → c13(F9_IN(z0))
U7'(f39_out1(z0), z1) → c16(F39_IN(z0))
F1_IN(s(z0)) → c
F9_IN(0) → c
F12_INc
S tuples:

F36_IN(z0) → c12(U5'(f39_in(z0), z0), F39_IN(z0))
F49_IN(z0) → c15(U7'(f39_in(z0), z0), F39_IN(z0))
F9_IN(s(z0)) → c4(F36_IN(z0))
F39_IN(s(z0)) → c9(F49_IN(z0))
U5'(f39_out1(z0), z1) → c13(F9_IN(z0))
U7'(f39_out1(z0), z1) → c16(F39_IN(z0))
F12_INc
K tuples:

F1_IN(s(z0)) → c(F9_IN(z0))
F1_IN(s(z0)) → c
F9_IN(0) → c(F12_IN)
F9_IN(0) → c
Defined Rule Symbols:

f1_in, U1, f9_in, U2, U3, f39_in, U4, f18_in, f36_in, U5, U6, f49_in, U7, U8, f12_in, U9

Defined Pair Symbols:

F36_IN, F49_IN, F1_IN, F9_IN, F39_IN, U5', U7', F12_IN

Compound Symbols:

c12, c15, c, c4, c9, c13, c16, c