(0) Obligation:

Clauses:

even(0).
even(s(s(0))).
even(s(s(s(X)))) :- odd(X).
odd(s(0)).
odd(s(X)) :- even(s(s(X))).

Query: even(g)

(1) LPReorderTransformerProof (EQUIVALENT transformation)

Reordered facts before rules in definite LP [PROLOG].

(2) Obligation:

Clauses:

even(0).
even(s(s(0))).
odd(s(0)).
even(s(s(s(X)))) :- odd(X).
odd(s(X)) :- even(s(s(X))).

Query: even(g)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1
f2_in(s(s(0))) → f2_out1
f2_in(s(s(s(s(0))))) → f2_out1
f2_in(s(s(s(s(z0))))) → U1(f2_in(s(s(z0))), s(s(s(s(z0)))))
U1(f2_out1, s(s(s(s(z0))))) → f2_out1
Tuples:

F2_IN(s(s(s(s(z0))))) → c3(U1'(f2_in(s(s(z0))), s(s(s(s(z0))))), F2_IN(s(s(z0))))
S tuples:

F2_IN(s(s(s(s(z0))))) → c3(U1'(f2_in(s(s(z0))), s(s(s(s(z0))))), F2_IN(s(s(z0))))
K tuples:none
Defined Rule Symbols:

f2_in, U1

Defined Pair Symbols:

F2_IN

Compound Symbols:

c3

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1
f2_in(s(s(0))) → f2_out1
f2_in(s(s(s(s(0))))) → f2_out1
f2_in(s(s(s(s(z0))))) → U1(f2_in(s(s(z0))), s(s(s(s(z0)))))
U1(f2_out1, s(s(s(s(z0))))) → f2_out1
Tuples:

F2_IN(s(s(s(s(z0))))) → c3(F2_IN(s(s(z0))))
S tuples:

F2_IN(s(s(s(s(z0))))) → c3(F2_IN(s(s(z0))))
K tuples:none
Defined Rule Symbols:

f2_in, U1

Defined Pair Symbols:

F2_IN

Compound Symbols:

c3

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(s(s(s(s(z0))))) → c3(F2_IN(s(s(z0))))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(s(s(s(s(z0))))) → c3(F2_IN(s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F2_IN(x1)) = [2]x1   
POL(c3(x1)) = x1   
POL(s(x1)) = [1] + x1   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1
f2_in(s(s(0))) → f2_out1
f2_in(s(s(s(s(0))))) → f2_out1
f2_in(s(s(s(s(z0))))) → U1(f2_in(s(s(z0))), s(s(s(s(z0)))))
U1(f2_out1, s(s(s(s(z0))))) → f2_out1
Tuples:

F2_IN(s(s(s(s(z0))))) → c3(F2_IN(s(s(z0))))
S tuples:none
K tuples:

F2_IN(s(s(s(s(z0))))) → c3(F2_IN(s(s(z0))))
Defined Rule Symbols:

f2_in, U1

Defined Pair Symbols:

F2_IN

Compound Symbols:

c3

(9) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(10) BOUNDS(O(1), O(1))

(11) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1
f1_in(s(s(0))) → f1_out1
f1_in(s(s(s(s(0))))) → f1_out1
f1_in(s(s(s(s(z0))))) → U1(f1_in(s(s(z0))), s(s(s(s(z0)))))
U1(f1_out1, s(s(s(s(z0))))) → f1_out1
Tuples:

F1_IN(s(s(s(s(z0))))) → c3(U1'(f1_in(s(s(z0))), s(s(s(s(z0))))), F1_IN(s(s(z0))))
S tuples:

F1_IN(s(s(s(s(z0))))) → c3(U1'(f1_in(s(s(z0))), s(s(s(s(z0))))), F1_IN(s(s(z0))))
K tuples:none
Defined Rule Symbols:

f1_in, U1

Defined Pair Symbols:

F1_IN

Compound Symbols:

c3

(13) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1
f1_in(s(s(0))) → f1_out1
f1_in(s(s(s(s(0))))) → f1_out1
f1_in(s(s(s(s(z0))))) → U1(f1_in(s(s(z0))), s(s(s(s(z0)))))
U1(f1_out1, s(s(s(s(z0))))) → f1_out1
Tuples:

F1_IN(s(s(s(s(z0))))) → c3(F1_IN(s(s(z0))))
S tuples:

F1_IN(s(s(s(s(z0))))) → c3(F1_IN(s(s(z0))))
K tuples:none
Defined Rule Symbols:

f1_in, U1

Defined Pair Symbols:

F1_IN

Compound Symbols:

c3

(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F1_IN(s(s(s(s(z0))))) → c3(F1_IN(s(s(z0))))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(s(s(s(s(z0))))) → c3(F1_IN(s(s(z0))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F1_IN(x1)) = [2]x1   
POL(c3(x1)) = x1   
POL(s(x1)) = [1] + x1   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1
f1_in(s(s(0))) → f1_out1
f1_in(s(s(s(s(0))))) → f1_out1
f1_in(s(s(s(s(z0))))) → U1(f1_in(s(s(z0))), s(s(s(s(z0)))))
U1(f1_out1, s(s(s(s(z0))))) → f1_out1
Tuples:

F1_IN(s(s(s(s(z0))))) → c3(F1_IN(s(s(z0))))
S tuples:none
K tuples:

F1_IN(s(s(s(s(z0))))) → c3(F1_IN(s(s(z0))))
Defined Rule Symbols:

f1_in, U1

Defined Pair Symbols:

F1_IN

Compound Symbols:

c3