(0) Obligation:

Clauses:

prefix(Xs, Ys) :- app(Xs, X1, Ys).
app([], X, X).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).

Query: prefix(a,g)

(1) LPReorderTransformerProof (EQUIVALENT transformation)

Reordered facts before rules in definite LP [PROLOG].

(2) Obligation:

Clauses:

app([], X, X).
prefix(Xs, Ys) :- app(Xs, X1, Ys).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).

Query: prefix(a,g)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1), z2) → f2_out1(z0)
f7_in(z0) → f7_out1([], z0)
f7_in(.(z0, z1)) → U2(f7_in(z1), .(z0, z1))
f7_in(.(z0, z1)) → U3(f7_in(z1), .(z0, z1))
U2(f7_out1(z0, z1), .(z2, z3)) → f7_out1(.(z2, z0), z1)
U3(f7_out1(z0, z1), .(z2, z3)) → f7_out1(.(z2, z0), z1)
Tuples:

F2_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(.(z0, z1)) → c3(U2'(f7_in(z1), .(z0, z1)), F7_IN(z1))
F7_IN(.(z0, z1)) → c4(U3'(f7_in(z1), .(z0, z1)), F7_IN(z1))
S tuples:

F2_IN(z0) → c(U1'(f7_in(z0), z0), F7_IN(z0))
F7_IN(.(z0, z1)) → c3(U2'(f7_in(z1), .(z0, z1)), F7_IN(z1))
F7_IN(.(z0, z1)) → c4(U3'(f7_in(z1), .(z0, z1)), F7_IN(z1))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f7_in, U2, U3

Defined Pair Symbols:

F2_IN, F7_IN

Compound Symbols:

c, c3, c4

(5) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1), z2) → f2_out1(z0)
f7_in(z0) → f7_out1([], z0)
f7_in(.(z0, z1)) → U2(f7_in(z1), .(z0, z1))
f7_in(.(z0, z1)) → U3(f7_in(z1), .(z0, z1))
U2(f7_out1(z0, z1), .(z2, z3)) → f7_out1(.(z2, z0), z1)
U3(f7_out1(z0, z1), .(z2, z3)) → f7_out1(.(z2, z0), z1)
Tuples:

F7_IN(.(z0, z1)) → c3(U2'(f7_in(z1), .(z0, z1)), F7_IN(z1))
F7_IN(.(z0, z1)) → c4(U3'(f7_in(z1), .(z0, z1)), F7_IN(z1))
F2_IN(z0) → c1(U1'(f7_in(z0), z0))
F2_IN(z0) → c1(F7_IN(z0))
S tuples:

F7_IN(.(z0, z1)) → c3(U2'(f7_in(z1), .(z0, z1)), F7_IN(z1))
F7_IN(.(z0, z1)) → c4(U3'(f7_in(z1), .(z0, z1)), F7_IN(z1))
F2_IN(z0) → c1(U1'(f7_in(z0), z0))
F2_IN(z0) → c1(F7_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f7_in, U2, U3

Defined Pair Symbols:

F7_IN, F2_IN

Compound Symbols:

c3, c4, c1

(7) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 3 trailing tuple parts

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1), z2) → f2_out1(z0)
f7_in(z0) → f7_out1([], z0)
f7_in(.(z0, z1)) → U2(f7_in(z1), .(z0, z1))
f7_in(.(z0, z1)) → U3(f7_in(z1), .(z0, z1))
U2(f7_out1(z0, z1), .(z2, z3)) → f7_out1(.(z2, z0), z1)
U3(f7_out1(z0, z1), .(z2, z3)) → f7_out1(.(z2, z0), z1)
Tuples:

F2_IN(z0) → c1(F7_IN(z0))
F7_IN(.(z0, z1)) → c3(F7_IN(z1))
F7_IN(.(z0, z1)) → c4(F7_IN(z1))
F2_IN(z0) → c1
S tuples:

F2_IN(z0) → c1(F7_IN(z0))
F7_IN(.(z0, z1)) → c3(F7_IN(z1))
F7_IN(.(z0, z1)) → c4(F7_IN(z1))
F2_IN(z0) → c1
K tuples:none
Defined Rule Symbols:

f2_in, U1, f7_in, U2, U3

Defined Pair Symbols:

F2_IN, F7_IN

Compound Symbols:

c1, c3, c4, c1

(9) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F2_IN(z0) → c1(F7_IN(z0))
F2_IN(z0) → c1

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1), z2) → f2_out1(z0)
f7_in(z0) → f7_out1([], z0)
f7_in(.(z0, z1)) → U2(f7_in(z1), .(z0, z1))
f7_in(.(z0, z1)) → U3(f7_in(z1), .(z0, z1))
U2(f7_out1(z0, z1), .(z2, z3)) → f7_out1(.(z2, z0), z1)
U3(f7_out1(z0, z1), .(z2, z3)) → f7_out1(.(z2, z0), z1)
Tuples:

F2_IN(z0) → c1(F7_IN(z0))
F7_IN(.(z0, z1)) → c3(F7_IN(z1))
F7_IN(.(z0, z1)) → c4(F7_IN(z1))
F2_IN(z0) → c1
S tuples:

F7_IN(.(z0, z1)) → c3(F7_IN(z1))
F7_IN(.(z0, z1)) → c4(F7_IN(z1))
K tuples:

F2_IN(z0) → c1(F7_IN(z0))
F2_IN(z0) → c1
Defined Rule Symbols:

f2_in, U1, f7_in, U2, U3

Defined Pair Symbols:

F2_IN, F7_IN

Compound Symbols:

c1, c3, c4, c1

(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F7_IN(.(z0, z1)) → c3(F7_IN(z1))
F7_IN(.(z0, z1)) → c4(F7_IN(z1))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(z0) → c1(F7_IN(z0))
F7_IN(.(z0, z1)) → c3(F7_IN(z1))
F7_IN(.(z0, z1)) → c4(F7_IN(z1))
F2_IN(z0) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [2] + x2   
POL(F2_IN(x1)) = [2] + x1   
POL(F7_IN(x1)) = [1] + x1   
POL(c1) = 0   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f7_in(z0), z0)
U1(f7_out1(z0, z1), z2) → f2_out1(z0)
f7_in(z0) → f7_out1([], z0)
f7_in(.(z0, z1)) → U2(f7_in(z1), .(z0, z1))
f7_in(.(z0, z1)) → U3(f7_in(z1), .(z0, z1))
U2(f7_out1(z0, z1), .(z2, z3)) → f7_out1(.(z2, z0), z1)
U3(f7_out1(z0, z1), .(z2, z3)) → f7_out1(.(z2, z0), z1)
Tuples:

F2_IN(z0) → c1(F7_IN(z0))
F7_IN(.(z0, z1)) → c3(F7_IN(z1))
F7_IN(.(z0, z1)) → c4(F7_IN(z1))
F2_IN(z0) → c1
S tuples:none
K tuples:

F2_IN(z0) → c1(F7_IN(z0))
F2_IN(z0) → c1
F7_IN(.(z0, z1)) → c3(F7_IN(z1))
F7_IN(.(z0, z1)) → c4(F7_IN(z1))
Defined Rule Symbols:

f2_in, U1, f7_in, U2, U3

Defined Pair Symbols:

F2_IN, F7_IN

Compound Symbols:

c1, c3, c4, c1

(13) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(14) BOUNDS(O(1), O(1))

(15) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f5_in(z0), z0)
U1(f5_out1(z0, z1), z2) → f1_out1(z0)
f5_in(z0) → f5_out1([], z0)
f5_in(.(z0, z1)) → U2(f5_in(z1), .(z0, z1))
f5_in(.(z0, z1)) → U3(f5_in(z1), .(z0, z1))
U2(f5_out1(z0, z1), .(z2, z3)) → f5_out1(.(z2, z0), z1)
U3(f5_out1(z0, z1), .(z2, z3)) → f5_out1(.(z2, z0), z1)
Tuples:

F1_IN(z0) → c(U1'(f5_in(z0), z0), F5_IN(z0))
F5_IN(.(z0, z1)) → c3(U2'(f5_in(z1), .(z0, z1)), F5_IN(z1))
F5_IN(.(z0, z1)) → c4(U3'(f5_in(z1), .(z0, z1)), F5_IN(z1))
S tuples:

F1_IN(z0) → c(U1'(f5_in(z0), z0), F5_IN(z0))
F5_IN(.(z0, z1)) → c3(U2'(f5_in(z1), .(z0, z1)), F5_IN(z1))
F5_IN(.(z0, z1)) → c4(U3'(f5_in(z1), .(z0, z1)), F5_IN(z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f5_in, U2, U3

Defined Pair Symbols:

F1_IN, F5_IN

Compound Symbols:

c, c3, c4

(17) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f5_in(z0), z0)
U1(f5_out1(z0, z1), z2) → f1_out1(z0)
f5_in(z0) → f5_out1([], z0)
f5_in(.(z0, z1)) → U2(f5_in(z1), .(z0, z1))
f5_in(.(z0, z1)) → U3(f5_in(z1), .(z0, z1))
U2(f5_out1(z0, z1), .(z2, z3)) → f5_out1(.(z2, z0), z1)
U3(f5_out1(z0, z1), .(z2, z3)) → f5_out1(.(z2, z0), z1)
Tuples:

F5_IN(.(z0, z1)) → c3(U2'(f5_in(z1), .(z0, z1)), F5_IN(z1))
F5_IN(.(z0, z1)) → c4(U3'(f5_in(z1), .(z0, z1)), F5_IN(z1))
F1_IN(z0) → c1(U1'(f5_in(z0), z0))
F1_IN(z0) → c1(F5_IN(z0))
S tuples:

F5_IN(.(z0, z1)) → c3(U2'(f5_in(z1), .(z0, z1)), F5_IN(z1))
F5_IN(.(z0, z1)) → c4(U3'(f5_in(z1), .(z0, z1)), F5_IN(z1))
F1_IN(z0) → c1(U1'(f5_in(z0), z0))
F1_IN(z0) → c1(F5_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f5_in, U2, U3

Defined Pair Symbols:

F5_IN, F1_IN

Compound Symbols:

c3, c4, c1

(19) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 3 trailing tuple parts

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f5_in(z0), z0)
U1(f5_out1(z0, z1), z2) → f1_out1(z0)
f5_in(z0) → f5_out1([], z0)
f5_in(.(z0, z1)) → U2(f5_in(z1), .(z0, z1))
f5_in(.(z0, z1)) → U3(f5_in(z1), .(z0, z1))
U2(f5_out1(z0, z1), .(z2, z3)) → f5_out1(.(z2, z0), z1)
U3(f5_out1(z0, z1), .(z2, z3)) → f5_out1(.(z2, z0), z1)
Tuples:

F1_IN(z0) → c1(F5_IN(z0))
F5_IN(.(z0, z1)) → c3(F5_IN(z1))
F5_IN(.(z0, z1)) → c4(F5_IN(z1))
F1_IN(z0) → c1
S tuples:

F1_IN(z0) → c1(F5_IN(z0))
F5_IN(.(z0, z1)) → c3(F5_IN(z1))
F5_IN(.(z0, z1)) → c4(F5_IN(z1))
F1_IN(z0) → c1
K tuples:none
Defined Rule Symbols:

f1_in, U1, f5_in, U2, U3

Defined Pair Symbols:

F1_IN, F5_IN

Compound Symbols:

c1, c3, c4, c1

(21) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F1_IN(z0) → c1(F5_IN(z0))
F1_IN(z0) → c1

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f5_in(z0), z0)
U1(f5_out1(z0, z1), z2) → f1_out1(z0)
f5_in(z0) → f5_out1([], z0)
f5_in(.(z0, z1)) → U2(f5_in(z1), .(z0, z1))
f5_in(.(z0, z1)) → U3(f5_in(z1), .(z0, z1))
U2(f5_out1(z0, z1), .(z2, z3)) → f5_out1(.(z2, z0), z1)
U3(f5_out1(z0, z1), .(z2, z3)) → f5_out1(.(z2, z0), z1)
Tuples:

F1_IN(z0) → c1(F5_IN(z0))
F5_IN(.(z0, z1)) → c3(F5_IN(z1))
F5_IN(.(z0, z1)) → c4(F5_IN(z1))
F1_IN(z0) → c1
S tuples:

F5_IN(.(z0, z1)) → c3(F5_IN(z1))
F5_IN(.(z0, z1)) → c4(F5_IN(z1))
K tuples:

F1_IN(z0) → c1(F5_IN(z0))
F1_IN(z0) → c1
Defined Rule Symbols:

f1_in, U1, f5_in, U2, U3

Defined Pair Symbols:

F1_IN, F5_IN

Compound Symbols:

c1, c3, c4, c1

(23) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F5_IN(.(z0, z1)) → c3(F5_IN(z1))
F5_IN(.(z0, z1)) → c4(F5_IN(z1))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(z0) → c1(F5_IN(z0))
F5_IN(.(z0, z1)) → c3(F5_IN(z1))
F5_IN(.(z0, z1)) → c4(F5_IN(z1))
F1_IN(z0) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [2] + x2   
POL(F1_IN(x1)) = [2] + x1   
POL(F5_IN(x1)) = [1] + x1   
POL(c1) = 0   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → U1(f5_in(z0), z0)
U1(f5_out1(z0, z1), z2) → f1_out1(z0)
f5_in(z0) → f5_out1([], z0)
f5_in(.(z0, z1)) → U2(f5_in(z1), .(z0, z1))
f5_in(.(z0, z1)) → U3(f5_in(z1), .(z0, z1))
U2(f5_out1(z0, z1), .(z2, z3)) → f5_out1(.(z2, z0), z1)
U3(f5_out1(z0, z1), .(z2, z3)) → f5_out1(.(z2, z0), z1)
Tuples:

F1_IN(z0) → c1(F5_IN(z0))
F5_IN(.(z0, z1)) → c3(F5_IN(z1))
F5_IN(.(z0, z1)) → c4(F5_IN(z1))
F1_IN(z0) → c1
S tuples:none
K tuples:

F1_IN(z0) → c1(F5_IN(z0))
F1_IN(z0) → c1
F5_IN(.(z0, z1)) → c3(F5_IN(z1))
F5_IN(.(z0, z1)) → c4(F5_IN(z1))
Defined Rule Symbols:

f1_in, U1, f5_in, U2, U3

Defined Pair Symbols:

F1_IN, F5_IN

Compound Symbols:

c1, c3, c4, c1