(0) Obligation:

Clauses:

ordered([]).
ordered(.(X1, [])).
ordered(.(X, .(Y, Xs))) :- ','(less(X, s(Y)), ordered(.(Y, Xs))).
less(0, s(X2)).
less(s(X), s(Y)) :- less(X, Y).

Query: ordered(g)

(1) LPReorderTransformerProof (EQUIVALENT transformation)

Reordered facts before rules in definite LP [PROLOG].

(2) Obligation:

Clauses:

ordered([]).
ordered(.(X1, [])).
less(0, s(X2)).
ordered(.(X, .(Y, Xs))) :- ','(less(X, s(Y)), ordered(.(Y, Xs))).
less(s(X), s(Y)) :- less(X, Y).

Query: ordered(g)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, z2))) → U1(f25_in(z0, z1, z2), .(z0, .(z1, z2)))
U1(f25_out1, .(z0, .(z1, z2))) → f2_out1
f45_in(0, s(z0)) → f45_out1
f45_in(s(z0), s(z1)) → U2(f45_in(z0, z1), s(z0), s(z1))
U2(f45_out1, s(z0), s(z1)) → f45_out1
f32_in(0, z0) → f32_out1
f32_in(s(z0), z1) → U3(f45_in(z0, z1), s(z0), z1)
U3(f45_out1, s(z0), z1) → f32_out1
f25_in(z0, z1, z2) → U4(f32_in(z0, z1), z0, z1, z2)
U4(f32_out1, z0, z1, z2) → U5(f2_in(.(z1, z2)), z0, z1, z2)
U5(f2_out1, z0, z1, z2) → f25_out1
Tuples:

F2_IN(.(z0, .(z1, z2))) → c2(U1'(f25_in(z0, z1, z2), .(z0, .(z1, z2))), F25_IN(z0, z1, z2))
F45_IN(s(z0), s(z1)) → c5(U2'(f45_in(z0, z1), s(z0), s(z1)), F45_IN(z0, z1))
F32_IN(s(z0), z1) → c8(U3'(f45_in(z0, z1), s(z0), z1), F45_IN(z0, z1))
F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(U5'(f2_in(.(z1, z2)), z0, z1, z2), F2_IN(.(z1, z2)))
S tuples:

F2_IN(.(z0, .(z1, z2))) → c2(U1'(f25_in(z0, z1, z2), .(z0, .(z1, z2))), F25_IN(z0, z1, z2))
F45_IN(s(z0), s(z1)) → c5(U2'(f45_in(z0, z1), s(z0), s(z1)), F45_IN(z0, z1))
F32_IN(s(z0), z1) → c8(U3'(f45_in(z0, z1), s(z0), z1), F45_IN(z0, z1))
F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(U5'(f2_in(.(z1, z2)), z0, z1, z2), F2_IN(.(z1, z2)))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f45_in, U2, f32_in, U3, f25_in, U4, U5

Defined Pair Symbols:

F2_IN, F45_IN, F32_IN, F25_IN, U4'

Compound Symbols:

c2, c5, c8, c10, c11

(5) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, z2))) → U1(f25_in(z0, z1, z2), .(z0, .(z1, z2)))
U1(f25_out1, .(z0, .(z1, z2))) → f2_out1
f45_in(0, s(z0)) → f45_out1
f45_in(s(z0), s(z1)) → U2(f45_in(z0, z1), s(z0), s(z1))
U2(f45_out1, s(z0), s(z1)) → f45_out1
f32_in(0, z0) → f32_out1
f32_in(s(z0), z1) → U3(f45_in(z0, z1), s(z0), z1)
U3(f45_out1, s(z0), z1) → f32_out1
f25_in(z0, z1, z2) → U4(f32_in(z0, z1), z0, z1, z2)
U4(f32_out1, z0, z1, z2) → U5(f2_in(.(z1, z2)), z0, z1, z2)
U5(f2_out1, z0, z1, z2) → f25_out1
Tuples:

F2_IN(.(z0, .(z1, z2))) → c2(U1'(f25_in(z0, z1, z2), .(z0, .(z1, z2))), F25_IN(z0, z1, z2))
F45_IN(s(z0), s(z1)) → c5(U2'(f45_in(z0, z1), s(z0), s(z1)), F45_IN(z0, z1))
F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(U5'(f2_in(.(z1, z2)), z0, z1, z2), F2_IN(.(z1, z2)))
F32_IN(s(z0), z1) → c(U3'(f45_in(z0, z1), s(z0), z1))
F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
S tuples:

F2_IN(.(z0, .(z1, z2))) → c2(U1'(f25_in(z0, z1, z2), .(z0, .(z1, z2))), F25_IN(z0, z1, z2))
F45_IN(s(z0), s(z1)) → c5(U2'(f45_in(z0, z1), s(z0), s(z1)), F45_IN(z0, z1))
F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(U5'(f2_in(.(z1, z2)), z0, z1, z2), F2_IN(.(z1, z2)))
F32_IN(s(z0), z1) → c(U3'(f45_in(z0, z1), s(z0), z1))
F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f45_in, U2, f32_in, U3, f25_in, U4, U5

Defined Pair Symbols:

F2_IN, F45_IN, F25_IN, U4', F32_IN

Compound Symbols:

c2, c5, c10, c11, c

(7) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, z2))) → U1(f25_in(z0, z1, z2), .(z0, .(z1, z2)))
U1(f25_out1, .(z0, .(z1, z2))) → f2_out1
f45_in(0, s(z0)) → f45_out1
f45_in(s(z0), s(z1)) → U2(f45_in(z0, z1), s(z0), s(z1))
U2(f45_out1, s(z0), s(z1)) → f45_out1
f32_in(0, z0) → f32_out1
f32_in(s(z0), z1) → U3(f45_in(z0, z1), s(z0), z1)
U3(f45_out1, s(z0), z1) → f32_out1
f25_in(z0, z1, z2) → U4(f32_in(z0, z1), z0, z1, z2)
U4(f32_out1, z0, z1, z2) → U5(f2_in(.(z1, z2)), z0, z1, z2)
U5(f2_out1, z0, z1, z2) → f25_out1
Tuples:

F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F25_IN(z0, z1, z2))
F45_IN(s(z0), s(z1)) → c5(F45_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(F2_IN(.(z1, z2)))
F32_IN(s(z0), z1) → c
S tuples:

F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F25_IN(z0, z1, z2))
F45_IN(s(z0), s(z1)) → c5(F45_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(F2_IN(.(z1, z2)))
F32_IN(s(z0), z1) → c
K tuples:none
Defined Rule Symbols:

f2_in, U1, f45_in, U2, f32_in, U3, f25_in, U4, U5

Defined Pair Symbols:

F25_IN, F32_IN, F2_IN, F45_IN, U4'

Compound Symbols:

c10, c, c2, c5, c11, c

(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
F32_IN(s(z0), z1) → c
We considered the (Usable) Rules:

f32_in(0, z0) → f32_out1
f32_in(s(z0), z1) → U3(f45_in(z0, z1), s(z0), z1)
f45_in(0, s(z0)) → f45_out1
f45_in(s(z0), s(z1)) → U2(f45_in(z0, z1), s(z0), s(z1))
U3(f45_out1, s(z0), z1) → f32_out1
U2(f45_out1, s(z0), s(z1)) → f45_out1
And the Tuples:

F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F25_IN(z0, z1, z2))
F45_IN(s(z0), s(z1)) → c5(F45_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(F2_IN(.(z1, z2)))
F32_IN(s(z0), z1) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = x1 + x2   
POL(0) = 0   
POL(F25_IN(x1, x2, x3)) = x1 + [2]x2 + [2]x3   
POL(F2_IN(x1)) = [2]x1   
POL(F32_IN(x1, x2)) = x1   
POL(F45_IN(x1, x2)) = 0   
POL(U2(x1, x2, x3)) = 0   
POL(U3(x1, x2, x3)) = 0   
POL(U4'(x1, x2, x3, x4)) = [2]x3 + [2]x4   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c10(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c2(x1)) = x1   
POL(c5(x1)) = x1   
POL(f32_in(x1, x2)) = 0   
POL(f32_out1) = 0   
POL(f45_in(x1, x2)) = [2]x2   
POL(f45_out1) = 0   
POL(s(x1)) = [2] + x1   

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, z2))) → U1(f25_in(z0, z1, z2), .(z0, .(z1, z2)))
U1(f25_out1, .(z0, .(z1, z2))) → f2_out1
f45_in(0, s(z0)) → f45_out1
f45_in(s(z0), s(z1)) → U2(f45_in(z0, z1), s(z0), s(z1))
U2(f45_out1, s(z0), s(z1)) → f45_out1
f32_in(0, z0) → f32_out1
f32_in(s(z0), z1) → U3(f45_in(z0, z1), s(z0), z1)
U3(f45_out1, s(z0), z1) → f32_out1
f25_in(z0, z1, z2) → U4(f32_in(z0, z1), z0, z1, z2)
U4(f32_out1, z0, z1, z2) → U5(f2_in(.(z1, z2)), z0, z1, z2)
U5(f2_out1, z0, z1, z2) → f25_out1
Tuples:

F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F25_IN(z0, z1, z2))
F45_IN(s(z0), s(z1)) → c5(F45_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(F2_IN(.(z1, z2)))
F32_IN(s(z0), z1) → c
S tuples:

F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F25_IN(z0, z1, z2))
F45_IN(s(z0), s(z1)) → c5(F45_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(F2_IN(.(z1, z2)))
K tuples:

F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
F32_IN(s(z0), z1) → c
Defined Rule Symbols:

f2_in, U1, f45_in, U2, f32_in, U3, f25_in, U4, U5

Defined Pair Symbols:

F25_IN, F32_IN, F2_IN, F45_IN, U4'

Compound Symbols:

c10, c, c2, c5, c11, c

(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(.(z0, .(z1, z2))) → c2(F25_IN(z0, z1, z2))
We considered the (Usable) Rules:

f32_in(0, z0) → f32_out1
f32_in(s(z0), z1) → U3(f45_in(z0, z1), s(z0), z1)
f45_in(0, s(z0)) → f45_out1
f45_in(s(z0), s(z1)) → U2(f45_in(z0, z1), s(z0), s(z1))
U3(f45_out1, s(z0), z1) → f32_out1
U2(f45_out1, s(z0), s(z1)) → f45_out1
And the Tuples:

F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F25_IN(z0, z1, z2))
F45_IN(s(z0), s(z1)) → c5(F45_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(F2_IN(.(z1, z2)))
F32_IN(s(z0), z1) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1] + x2   
POL(0) = 0   
POL(F25_IN(x1, x2, x3)) = [1] + x3   
POL(F2_IN(x1)) = x1   
POL(F32_IN(x1, x2)) = 0   
POL(F45_IN(x1, x2)) = 0   
POL(U2(x1, x2, x3)) = 0   
POL(U3(x1, x2, x3)) = 0   
POL(U4'(x1, x2, x3, x4)) = [1] + x4   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c10(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c2(x1)) = x1   
POL(c5(x1)) = x1   
POL(f32_in(x1, x2)) = 0   
POL(f32_out1) = 0   
POL(f45_in(x1, x2)) = 0   
POL(f45_out1) = 0   
POL(s(x1)) = 0   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, z2))) → U1(f25_in(z0, z1, z2), .(z0, .(z1, z2)))
U1(f25_out1, .(z0, .(z1, z2))) → f2_out1
f45_in(0, s(z0)) → f45_out1
f45_in(s(z0), s(z1)) → U2(f45_in(z0, z1), s(z0), s(z1))
U2(f45_out1, s(z0), s(z1)) → f45_out1
f32_in(0, z0) → f32_out1
f32_in(s(z0), z1) → U3(f45_in(z0, z1), s(z0), z1)
U3(f45_out1, s(z0), z1) → f32_out1
f25_in(z0, z1, z2) → U4(f32_in(z0, z1), z0, z1, z2)
U4(f32_out1, z0, z1, z2) → U5(f2_in(.(z1, z2)), z0, z1, z2)
U5(f2_out1, z0, z1, z2) → f25_out1
Tuples:

F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F25_IN(z0, z1, z2))
F45_IN(s(z0), s(z1)) → c5(F45_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(F2_IN(.(z1, z2)))
F32_IN(s(z0), z1) → c
S tuples:

F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F45_IN(s(z0), s(z1)) → c5(F45_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(F2_IN(.(z1, z2)))
K tuples:

F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
F32_IN(s(z0), z1) → c
F2_IN(.(z0, .(z1, z2))) → c2(F25_IN(z0, z1, z2))
Defined Rule Symbols:

f2_in, U1, f45_in, U2, f32_in, U3, f25_in, U4, U5

Defined Pair Symbols:

F25_IN, F32_IN, F2_IN, F45_IN, U4'

Compound Symbols:

c10, c, c2, c5, c11, c

(13) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(F2_IN(.(z1, z2)))
F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(F2_IN(.(z1, z2)))
F32_IN(s(z0), z1) → c
F2_IN(.(z0, .(z1, z2))) → c2(F25_IN(z0, z1, z2))

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, z2))) → U1(f25_in(z0, z1, z2), .(z0, .(z1, z2)))
U1(f25_out1, .(z0, .(z1, z2))) → f2_out1
f45_in(0, s(z0)) → f45_out1
f45_in(s(z0), s(z1)) → U2(f45_in(z0, z1), s(z0), s(z1))
U2(f45_out1, s(z0), s(z1)) → f45_out1
f32_in(0, z0) → f32_out1
f32_in(s(z0), z1) → U3(f45_in(z0, z1), s(z0), z1)
U3(f45_out1, s(z0), z1) → f32_out1
f25_in(z0, z1, z2) → U4(f32_in(z0, z1), z0, z1, z2)
U4(f32_out1, z0, z1, z2) → U5(f2_in(.(z1, z2)), z0, z1, z2)
U5(f2_out1, z0, z1, z2) → f25_out1
Tuples:

F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
F2_IN(.(z0, .(z1, z2))) → c2(F25_IN(z0, z1, z2))
F45_IN(s(z0), s(z1)) → c5(F45_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(F2_IN(.(z1, z2)))
F32_IN(s(z0), z1) → c
S tuples:

F45_IN(s(z0), s(z1)) → c5(F45_IN(z0, z1))
K tuples:

F32_IN(s(z0), z1) → c(F45_IN(z0, z1))
F32_IN(s(z0), z1) → c
F2_IN(.(z0, .(z1, z2))) → c2(F25_IN(z0, z1, z2))
F25_IN(z0, z1, z2) → c10(U4'(f32_in(z0, z1), z0, z1, z2), F32_IN(z0, z1))
U4'(f32_out1, z0, z1, z2) → c11(F2_IN(.(z1, z2)))
Defined Rule Symbols:

f2_in, U1, f45_in, U2, f32_in, U3, f25_in, U4, U5

Defined Pair Symbols:

F25_IN, F32_IN, F2_IN, F45_IN, U4'

Compound Symbols:

c10, c, c2, c5, c11, c

(15) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(0, .(z0, z1))) → U1(f28_in(z0, z1), .(0, .(z0, z1)))
f1_in(.(s(z0), .(z1, z2))) → U2(f35_in(z0, z1, z2), .(s(z0), .(z1, z2)))
U1(f28_out1, .(0, .(z0, z1))) → f1_out1
U1(f28_out2, .(0, .(z0, z1))) → f1_out1
U2(f35_out1, .(s(z0), .(z1, z2))) → f1_out1
f41_in(0, s(z0)) → f41_out1
f41_in(s(z0), s(z1)) → U3(f41_in(z0, z1), s(z0), s(z1))
U3(f41_out1, s(z0), s(z1)) → f41_out1
f35_in(z0, z1, z2) → U4(f41_in(z0, z1), z0, z1, z2)
U4(f41_out1, z0, z1, z2) → U5(f1_in(.(z1, z2)), z0, z1, z2)
U5(f1_out1, z0, z1, z2) → f35_out1
f28_in(z0, z1) → U6(f1_in(.(z0, z1)), f31_in(z0, z1), z0, z1)
U6(f1_out1, z0, z1, z2) → f28_out1
U6(z0, f31_out1, z1, z2) → f28_out2
Tuples:

F1_IN(.(0, .(z0, z1))) → c2(U1'(f28_in(z0, z1), .(0, .(z0, z1))), F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(U2'(f35_in(z0, z1, z2), .(s(z0), .(z1, z2))), F35_IN(z0, z1, z2))
F41_IN(s(z0), s(z1)) → c8(U3'(f41_in(z0, z1), s(z0), s(z1)), F41_IN(z0, z1))
F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(U5'(f1_in(.(z1, z2)), z0, z1, z2), F1_IN(.(z1, z2)))
F28_IN(z0, z1) → c13(U6'(f1_in(.(z0, z1)), f31_in(z0, z1), z0, z1), F1_IN(.(z0, z1)))
S tuples:

F1_IN(.(0, .(z0, z1))) → c2(U1'(f28_in(z0, z1), .(0, .(z0, z1))), F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(U2'(f35_in(z0, z1, z2), .(s(z0), .(z1, z2))), F35_IN(z0, z1, z2))
F41_IN(s(z0), s(z1)) → c8(U3'(f41_in(z0, z1), s(z0), s(z1)), F41_IN(z0, z1))
F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(U5'(f1_in(.(z1, z2)), z0, z1, z2), F1_IN(.(z1, z2)))
F28_IN(z0, z1) → c13(U6'(f1_in(.(z0, z1)), f31_in(z0, z1), z0, z1), F1_IN(.(z0, z1)))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f41_in, U3, f35_in, U4, U5, f28_in, U6

Defined Pair Symbols:

F1_IN, F41_IN, F35_IN, U4', F28_IN

Compound Symbols:

c2, c3, c8, c10, c11, c13

(17) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 5 trailing tuple parts

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(0, .(z0, z1))) → U1(f28_in(z0, z1), .(0, .(z0, z1)))
f1_in(.(s(z0), .(z1, z2))) → U2(f35_in(z0, z1, z2), .(s(z0), .(z1, z2)))
U1(f28_out1, .(0, .(z0, z1))) → f1_out1
U1(f28_out2, .(0, .(z0, z1))) → f1_out1
U2(f35_out1, .(s(z0), .(z1, z2))) → f1_out1
f41_in(0, s(z0)) → f41_out1
f41_in(s(z0), s(z1)) → U3(f41_in(z0, z1), s(z0), s(z1))
U3(f41_out1, s(z0), s(z1)) → f41_out1
f35_in(z0, z1, z2) → U4(f41_in(z0, z1), z0, z1, z2)
U4(f41_out1, z0, z1, z2) → U5(f1_in(.(z1, z2)), z0, z1, z2)
U5(f1_out1, z0, z1, z2) → f35_out1
f28_in(z0, z1) → U6(f1_in(.(z0, z1)), f31_in(z0, z1), z0, z1)
U6(f1_out1, z0, z1, z2) → f28_out1
U6(z0, f31_out1, z1, z2) → f28_out2
Tuples:

F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
S tuples:

F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f41_in, U3, f35_in, U4, U5, f28_in, U6

Defined Pair Symbols:

F35_IN, F1_IN, F41_IN, U4', F28_IN

Compound Symbols:

c10, c2, c3, c8, c11, c13

(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
We considered the (Usable) Rules:

f41_in(0, s(z0)) → f41_out1
f41_in(s(z0), s(z1)) → U3(f41_in(z0, z1), s(z0), s(z1))
U3(f41_out1, s(z0), s(z1)) → f41_out1
And the Tuples:

F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = x1 + x2   
POL(0) = [1]   
POL(F1_IN(x1)) = x1   
POL(F28_IN(x1, x2)) = [1] + x1 + x2   
POL(F35_IN(x1, x2, x3)) = x2 + x3   
POL(F41_IN(x1, x2)) = 0   
POL(U3(x1, x2, x3)) = 0   
POL(U4'(x1, x2, x3, x4)) = x3 + x4   
POL(c10(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c13(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c8(x1)) = x1   
POL(f41_in(x1, x2)) = 0   
POL(f41_out1) = 0   
POL(s(x1)) = 0   

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(0, .(z0, z1))) → U1(f28_in(z0, z1), .(0, .(z0, z1)))
f1_in(.(s(z0), .(z1, z2))) → U2(f35_in(z0, z1, z2), .(s(z0), .(z1, z2)))
U1(f28_out1, .(0, .(z0, z1))) → f1_out1
U1(f28_out2, .(0, .(z0, z1))) → f1_out1
U2(f35_out1, .(s(z0), .(z1, z2))) → f1_out1
f41_in(0, s(z0)) → f41_out1
f41_in(s(z0), s(z1)) → U3(f41_in(z0, z1), s(z0), s(z1))
U3(f41_out1, s(z0), s(z1)) → f41_out1
f35_in(z0, z1, z2) → U4(f41_in(z0, z1), z0, z1, z2)
U4(f41_out1, z0, z1, z2) → U5(f1_in(.(z1, z2)), z0, z1, z2)
U5(f1_out1, z0, z1, z2) → f35_out1
f28_in(z0, z1) → U6(f1_in(.(z0, z1)), f31_in(z0, z1), z0, z1)
U6(f1_out1, z0, z1, z2) → f28_out1
U6(z0, f31_out1, z1, z2) → f28_out2
Tuples:

F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
S tuples:

F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
K tuples:

F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
Defined Rule Symbols:

f1_in, U1, U2, f41_in, U3, f35_in, U4, U5, f28_in, U6

Defined Pair Symbols:

F35_IN, F1_IN, F41_IN, U4', F28_IN

Compound Symbols:

c10, c2, c3, c8, c11, c13

(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
We considered the (Usable) Rules:

f41_in(0, s(z0)) → f41_out1
f41_in(s(z0), s(z1)) → U3(f41_in(z0, z1), s(z0), s(z1))
U3(f41_out1, s(z0), s(z1)) → f41_out1
And the Tuples:

F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1] + x2   
POL(0) = 0   
POL(F1_IN(x1)) = x1   
POL(F28_IN(x1, x2)) = [1] + x2   
POL(F35_IN(x1, x2, x3)) = [1] + x3   
POL(F41_IN(x1, x2)) = 0   
POL(U3(x1, x2, x3)) = 0   
POL(U4'(x1, x2, x3, x4)) = [1] + x4   
POL(c10(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c13(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c8(x1)) = x1   
POL(f41_in(x1, x2)) = 0   
POL(f41_out1) = 0   
POL(s(x1)) = 0   

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(0, .(z0, z1))) → U1(f28_in(z0, z1), .(0, .(z0, z1)))
f1_in(.(s(z0), .(z1, z2))) → U2(f35_in(z0, z1, z2), .(s(z0), .(z1, z2)))
U1(f28_out1, .(0, .(z0, z1))) → f1_out1
U1(f28_out2, .(0, .(z0, z1))) → f1_out1
U2(f35_out1, .(s(z0), .(z1, z2))) → f1_out1
f41_in(0, s(z0)) → f41_out1
f41_in(s(z0), s(z1)) → U3(f41_in(z0, z1), s(z0), s(z1))
U3(f41_out1, s(z0), s(z1)) → f41_out1
f35_in(z0, z1, z2) → U4(f41_in(z0, z1), z0, z1, z2)
U4(f41_out1, z0, z1, z2) → U5(f1_in(.(z1, z2)), z0, z1, z2)
U5(f1_out1, z0, z1, z2) → f35_out1
f28_in(z0, z1) → U6(f1_in(.(z0, z1)), f31_in(z0, z1), z0, z1)
U6(f1_out1, z0, z1, z2) → f28_out1
U6(z0, f31_out1, z1, z2) → f28_out2
Tuples:

F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
S tuples:

F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
K tuples:

F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
Defined Rule Symbols:

f1_in, U1, U2, f41_in, U3, f35_in, U4, U5, f28_in, U6

Defined Pair Symbols:

F35_IN, F1_IN, F41_IN, U4', F28_IN

Compound Symbols:

c10, c2, c3, c8, c11, c13

(23) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(0, .(z0, z1))) → U1(f28_in(z0, z1), .(0, .(z0, z1)))
f1_in(.(s(z0), .(z1, z2))) → U2(f35_in(z0, z1, z2), .(s(z0), .(z1, z2)))
U1(f28_out1, .(0, .(z0, z1))) → f1_out1
U1(f28_out2, .(0, .(z0, z1))) → f1_out1
U2(f35_out1, .(s(z0), .(z1, z2))) → f1_out1
f41_in(0, s(z0)) → f41_out1
f41_in(s(z0), s(z1)) → U3(f41_in(z0, z1), s(z0), s(z1))
U3(f41_out1, s(z0), s(z1)) → f41_out1
f35_in(z0, z1, z2) → U4(f41_in(z0, z1), z0, z1, z2)
U4(f41_out1, z0, z1, z2) → U5(f1_in(.(z1, z2)), z0, z1, z2)
U5(f1_out1, z0, z1, z2) → f35_out1
f28_in(z0, z1) → U6(f1_in(.(z0, z1)), f31_in(z0, z1), z0, z1)
U6(f1_out1, z0, z1, z2) → f28_out1
U6(z0, f31_out1, z1, z2) → f28_out2
Tuples:

F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
S tuples:

F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
K tuples:

F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
Defined Rule Symbols:

f1_in, U1, U2, f41_in, U3, f35_in, U4, U5, f28_in, U6

Defined Pair Symbols:

F35_IN, F1_IN, F41_IN, U4', F28_IN

Compound Symbols:

c10, c2, c3, c8, c11, c13

(25) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
We considered the (Usable) Rules:

f41_in(0, s(z0)) → f41_out1
f41_in(s(z0), s(z1)) → U3(f41_in(z0, z1), s(z0), s(z1))
U3(f41_out1, s(z0), s(z1)) → f41_out1
And the Tuples:

F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = x1 + x2   
POL(0) = 0   
POL(F1_IN(x1)) = x1   
POL(F28_IN(x1, x2)) = x1 + x2   
POL(F35_IN(x1, x2, x3)) = x1 + x2 + x3   
POL(F41_IN(x1, x2)) = x1   
POL(U3(x1, x2, x3)) = 0   
POL(U4'(x1, x2, x3, x4)) = x3 + x4   
POL(c10(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c13(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c8(x1)) = x1   
POL(f41_in(x1, x2)) = 0   
POL(f41_out1) = 0   
POL(s(x1)) = [2] + x1   

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(0, .(z0, z1))) → U1(f28_in(z0, z1), .(0, .(z0, z1)))
f1_in(.(s(z0), .(z1, z2))) → U2(f35_in(z0, z1, z2), .(s(z0), .(z1, z2)))
U1(f28_out1, .(0, .(z0, z1))) → f1_out1
U1(f28_out2, .(0, .(z0, z1))) → f1_out1
U2(f35_out1, .(s(z0), .(z1, z2))) → f1_out1
f41_in(0, s(z0)) → f41_out1
f41_in(s(z0), s(z1)) → U3(f41_in(z0, z1), s(z0), s(z1))
U3(f41_out1, s(z0), s(z1)) → f41_out1
f35_in(z0, z1, z2) → U4(f41_in(z0, z1), z0, z1, z2)
U4(f41_out1, z0, z1, z2) → U5(f1_in(.(z1, z2)), z0, z1, z2)
U5(f1_out1, z0, z1, z2) → f35_out1
f28_in(z0, z1) → U6(f1_in(.(z0, z1)), f31_in(z0, z1), z0, z1)
U6(f1_out1, z0, z1, z2) → f28_out1
U6(z0, f31_out1, z1, z2) → f28_out2
Tuples:

F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
S tuples:none
K tuples:

F28_IN(z0, z1) → c13(F1_IN(.(z0, z1)))
F1_IN(.(0, .(z0, z1))) → c2(F28_IN(z0, z1))
F1_IN(.(s(z0), .(z1, z2))) → c3(F35_IN(z0, z1, z2))
F35_IN(z0, z1, z2) → c10(U4'(f41_in(z0, z1), z0, z1, z2), F41_IN(z0, z1))
U4'(f41_out1, z0, z1, z2) → c11(F1_IN(.(z1, z2)))
F41_IN(s(z0), s(z1)) → c8(F41_IN(z0, z1))
Defined Rule Symbols:

f1_in, U1, U2, f41_in, U3, f35_in, U4, U5, f28_in, U6

Defined Pair Symbols:

F35_IN, F1_IN, F41_IN, U4', F28_IN

Compound Symbols:

c10, c2, c3, c8, c11, c13

(27) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(28) BOUNDS(O(1), O(1))