(0) Obligation:

Clauses:

mult(X1, 0, 0).
mult(X, s(Y), Z) :- ','(mult(X, Y, W), sum(W, X, Z)).
sum(X, 0, X).
sum(X, s(Y), s(Z)) :- sum(X, Y, Z).

Query: mult(g,g,a)

(1) LPReorderTransformerProof (EQUIVALENT transformation)

Reordered facts before rules in definite LP [PROLOG].

(2) Obligation:

Clauses:

mult(X1, 0, 0).
sum(X, 0, X).
mult(X, s(Y), Z) :- ','(mult(X, Y, W), sum(W, X, Z)).
sum(X, s(Y), s(Z)) :- sum(X, Y, Z).

Query: mult(g,g,a)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, 0) → f2_out1(0)
f2_in(z0, s(z1)) → U1(f14_in(z0, z1), z0, s(z1))
U1(f14_out1(z0, z1), z2, s(z3)) → f2_out1(z1)
f23_in(z0, 0) → f23_out1(z0)
f23_in(z0, s(z1)) → U2(f23_in(z0, z1), z0, s(z1))
U2(f23_out1(z0), z1, s(z2)) → f23_out1(s(z0))
f22_in(z0, 0) → f22_out1(0)
f22_in(z0, s(z1)) → U3(f36_in(z0, z1), z0, s(z1))
U3(f36_out1(z0, z1), z2, s(z3)) → f22_out1(z1)
f40_in(z0, 0) → f40_out1(z0)
f40_in(z0, s(z1)) → U4(f40_in(z0, z1), z0, s(z1))
U4(f40_out1(z0), z1, s(z2)) → f40_out1(s(z0))
f14_in(z0, z1) → U5(f22_in(z0, z1), z0, z1)
U5(f22_out1(z0), z1, z2) → U6(f23_in(z0, z1), z1, z2, z0)
U6(f23_out1(z0), z1, z2, z3) → f14_out1(z3, z0)
f36_in(z0, z1) → U7(f22_in(z0, z1), z0, z1)
U7(f22_out1(z0), z1, z2) → U8(f40_in(z0, z1), z1, z2, z0)
U8(f40_out1(z0), z1, z2, z3) → f36_out1(z3, z0)
Tuples:

F2_IN(z0, s(z1)) → c1(U1'(f14_in(z0, z1), z0, s(z1)), F14_IN(z0, z1))
F23_IN(z0, s(z1)) → c4(U2'(f23_in(z0, z1), z0, s(z1)), F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(U3'(f36_in(z0, z1), z0, s(z1)), F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(U4'(f40_in(z0, z1), z0, s(z1)), F40_IN(z0, z1))
F14_IN(z0, z1) → c12(U5'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c13(U6'(f23_in(z0, z1), z1, z2, z0), F23_IN(z0, z1))
F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c16(U8'(f40_in(z0, z1), z1, z2, z0), F40_IN(z0, z1))
S tuples:

F2_IN(z0, s(z1)) → c1(U1'(f14_in(z0, z1), z0, s(z1)), F14_IN(z0, z1))
F23_IN(z0, s(z1)) → c4(U2'(f23_in(z0, z1), z0, s(z1)), F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(U3'(f36_in(z0, z1), z0, s(z1)), F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(U4'(f40_in(z0, z1), z0, s(z1)), F40_IN(z0, z1))
F14_IN(z0, z1) → c12(U5'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c13(U6'(f23_in(z0, z1), z1, z2, z0), F23_IN(z0, z1))
F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c16(U8'(f40_in(z0, z1), z1, z2, z0), F40_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f23_in, U2, f22_in, U3, f40_in, U4, f14_in, U5, U6, f36_in, U7, U8

Defined Pair Symbols:

F2_IN, F23_IN, F22_IN, F40_IN, F14_IN, U5', F36_IN, U7'

Compound Symbols:

c1, c4, c7, c10, c12, c13, c15, c16

(5) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, 0) → f2_out1(0)
f2_in(z0, s(z1)) → U1(f14_in(z0, z1), z0, s(z1))
U1(f14_out1(z0, z1), z2, s(z3)) → f2_out1(z1)
f23_in(z0, 0) → f23_out1(z0)
f23_in(z0, s(z1)) → U2(f23_in(z0, z1), z0, s(z1))
U2(f23_out1(z0), z1, s(z2)) → f23_out1(s(z0))
f22_in(z0, 0) → f22_out1(0)
f22_in(z0, s(z1)) → U3(f36_in(z0, z1), z0, s(z1))
U3(f36_out1(z0, z1), z2, s(z3)) → f22_out1(z1)
f40_in(z0, 0) → f40_out1(z0)
f40_in(z0, s(z1)) → U4(f40_in(z0, z1), z0, s(z1))
U4(f40_out1(z0), z1, s(z2)) → f40_out1(s(z0))
f14_in(z0, z1) → U5(f22_in(z0, z1), z0, z1)
U5(f22_out1(z0), z1, z2) → U6(f23_in(z0, z1), z1, z2, z0)
U6(f23_out1(z0), z1, z2, z3) → f14_out1(z3, z0)
f36_in(z0, z1) → U7(f22_in(z0, z1), z0, z1)
U7(f22_out1(z0), z1, z2) → U8(f40_in(z0, z1), z1, z2, z0)
U8(f40_out1(z0), z1, z2, z3) → f36_out1(z3, z0)
Tuples:

F23_IN(z0, s(z1)) → c4(U2'(f23_in(z0, z1), z0, s(z1)), F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(U3'(f36_in(z0, z1), z0, s(z1)), F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(U4'(f40_in(z0, z1), z0, s(z1)), F40_IN(z0, z1))
F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F2_IN(z0, s(z1)) → c(U1'(f14_in(z0, z1), z0, s(z1)))
F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(U6'(f23_in(z0, z1), z1, z2, z0))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(U8'(f40_in(z0, z1), z1, z2, z0))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
S tuples:

F23_IN(z0, s(z1)) → c4(U2'(f23_in(z0, z1), z0, s(z1)), F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(U3'(f36_in(z0, z1), z0, s(z1)), F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(U4'(f40_in(z0, z1), z0, s(z1)), F40_IN(z0, z1))
F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F2_IN(z0, s(z1)) → c(U1'(f14_in(z0, z1), z0, s(z1)))
F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(U6'(f23_in(z0, z1), z1, z2, z0))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(U8'(f40_in(z0, z1), z1, z2, z0))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f23_in, U2, f22_in, U3, f40_in, U4, f14_in, U5, U6, f36_in, U7, U8

Defined Pair Symbols:

F23_IN, F22_IN, F40_IN, F36_IN, F2_IN, F14_IN, U5', U7'

Compound Symbols:

c4, c7, c10, c15, c

(7) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 6 trailing tuple parts

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, 0) → f2_out1(0)
f2_in(z0, s(z1)) → U1(f14_in(z0, z1), z0, s(z1))
U1(f14_out1(z0, z1), z2, s(z3)) → f2_out1(z1)
f23_in(z0, 0) → f23_out1(z0)
f23_in(z0, s(z1)) → U2(f23_in(z0, z1), z0, s(z1))
U2(f23_out1(z0), z1, s(z2)) → f23_out1(s(z0))
f22_in(z0, 0) → f22_out1(0)
f22_in(z0, s(z1)) → U3(f36_in(z0, z1), z0, s(z1))
U3(f36_out1(z0, z1), z2, s(z3)) → f22_out1(z1)
f40_in(z0, 0) → f40_out1(z0)
f40_in(z0, s(z1)) → U4(f40_in(z0, z1), z0, s(z1))
U4(f40_out1(z0), z1, s(z2)) → f40_out1(s(z0))
f14_in(z0, z1) → U5(f22_in(z0, z1), z0, z1)
U5(f22_out1(z0), z1, z2) → U6(f23_in(z0, z1), z1, z2, z0)
U6(f23_out1(z0), z1, z2, z3) → f14_out1(z3, z0)
f36_in(z0, z1) → U7(f22_in(z0, z1), z0, z1)
U7(f22_out1(z0), z1, z2) → U8(f40_in(z0, z1), z1, z2, z0)
U8(f40_out1(z0), z1, z2, z3) → f36_out1(z3, z0)
Tuples:

F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
U7'(f22_out1(z0), z1, z2) → c
S tuples:

F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
U7'(f22_out1(z0), z1, z2) → c
K tuples:none
Defined Rule Symbols:

f2_in, U1, f23_in, U2, f22_in, U3, f40_in, U4, f14_in, U5, U6, f36_in, U7, U8

Defined Pair Symbols:

F36_IN, F2_IN, F14_IN, U5', U7', F23_IN, F22_IN, F40_IN

Compound Symbols:

c15, c, c4, c7, c10, c

(9) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, 0) → f2_out1(0)
f2_in(z0, s(z1)) → U1(f14_in(z0, z1), z0, s(z1))
U1(f14_out1(z0, z1), z2, s(z3)) → f2_out1(z1)
f23_in(z0, 0) → f23_out1(z0)
f23_in(z0, s(z1)) → U2(f23_in(z0, z1), z0, s(z1))
U2(f23_out1(z0), z1, s(z2)) → f23_out1(s(z0))
f22_in(z0, 0) → f22_out1(0)
f22_in(z0, s(z1)) → U3(f36_in(z0, z1), z0, s(z1))
U3(f36_out1(z0, z1), z2, s(z3)) → f22_out1(z1)
f40_in(z0, 0) → f40_out1(z0)
f40_in(z0, s(z1)) → U4(f40_in(z0, z1), z0, s(z1))
U4(f40_out1(z0), z1, s(z2)) → f40_out1(s(z0))
f14_in(z0, z1) → U5(f22_in(z0, z1), z0, z1)
U5(f22_out1(z0), z1, z2) → U6(f23_in(z0, z1), z1, z2, z0)
U6(f23_out1(z0), z1, z2, z3) → f14_out1(z3, z0)
f36_in(z0, z1) → U7(f22_in(z0, z1), z0, z1)
U7(f22_out1(z0), z1, z2) → U8(f40_in(z0, z1), z1, z2, z0)
U8(f40_out1(z0), z1, z2, z3) → f36_out1(z3, z0)
Tuples:

F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
U7'(f22_out1(z0), z1, z2) → c
S tuples:

F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c
K tuples:

F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
Defined Rule Symbols:

f2_in, U1, f23_in, U2, f22_in, U3, f40_in, U4, f14_in, U5, U6, f36_in, U7, U8

Defined Pair Symbols:

F36_IN, F2_IN, F14_IN, U5', U7', F23_IN, F22_IN, F40_IN

Compound Symbols:

c15, c, c4, c7, c10, c

(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
We considered the (Usable) Rules:

f22_in(z0, 0) → f22_out1(0)
f22_in(z0, s(z1)) → U3(f36_in(z0, z1), z0, s(z1))
f36_in(z0, z1) → U7(f22_in(z0, z1), z0, z1)
U3(f36_out1(z0, z1), z2, s(z3)) → f22_out1(z1)
U7(f22_out1(z0), z1, z2) → U8(f40_in(z0, z1), z1, z2, z0)
f40_in(z0, 0) → f40_out1(z0)
f40_in(z0, s(z1)) → U4(f40_in(z0, z1), z0, s(z1))
U8(f40_out1(z0), z1, z2, z3) → f36_out1(z3, z0)
U4(f40_out1(z0), z1, s(z2)) → f40_out1(s(z0))
And the Tuples:

F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
U7'(f22_out1(z0), z1, z2) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F14_IN(x1, x2)) = [1] + [3]x1 + [3]x2   
POL(F22_IN(x1, x2)) = 0   
POL(F23_IN(x1, x2)) = x2   
POL(F2_IN(x1, x2)) = [3]x1 + [3]x2   
POL(F36_IN(x1, x2)) = 0   
POL(F40_IN(x1, x2)) = 0   
POL(U3(x1, x2, x3)) = 0   
POL(U4(x1, x2, x3)) = 0   
POL(U5'(x1, x2, x3)) = [1] + [2]x2 + x3   
POL(U7(x1, x2, x3)) = 0   
POL(U7'(x1, x2, x3)) = 0   
POL(U8(x1, x2, x3, x4)) = 0   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c10(x1)) = x1   
POL(c15(x1, x2)) = x1 + x2   
POL(c4(x1)) = x1   
POL(c7(x1)) = x1   
POL(f22_in(x1, x2)) = 0   
POL(f22_out1(x1)) = 0   
POL(f36_in(x1, x2)) = 0   
POL(f36_out1(x1, x2)) = 0   
POL(f40_in(x1, x2)) = x1 + [3]x2   
POL(f40_out1(x1)) = 0   
POL(s(x1)) = [1] + x1   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, 0) → f2_out1(0)
f2_in(z0, s(z1)) → U1(f14_in(z0, z1), z0, s(z1))
U1(f14_out1(z0, z1), z2, s(z3)) → f2_out1(z1)
f23_in(z0, 0) → f23_out1(z0)
f23_in(z0, s(z1)) → U2(f23_in(z0, z1), z0, s(z1))
U2(f23_out1(z0), z1, s(z2)) → f23_out1(s(z0))
f22_in(z0, 0) → f22_out1(0)
f22_in(z0, s(z1)) → U3(f36_in(z0, z1), z0, s(z1))
U3(f36_out1(z0, z1), z2, s(z3)) → f22_out1(z1)
f40_in(z0, 0) → f40_out1(z0)
f40_in(z0, s(z1)) → U4(f40_in(z0, z1), z0, s(z1))
U4(f40_out1(z0), z1, s(z2)) → f40_out1(s(z0))
f14_in(z0, z1) → U5(f22_in(z0, z1), z0, z1)
U5(f22_out1(z0), z1, z2) → U6(f23_in(z0, z1), z1, z2, z0)
U6(f23_out1(z0), z1, z2, z3) → f14_out1(z3, z0)
f36_in(z0, z1) → U7(f22_in(z0, z1), z0, z1)
U7(f22_out1(z0), z1, z2) → U8(f40_in(z0, z1), z1, z2, z0)
U8(f40_out1(z0), z1, z2, z3) → f36_out1(z3, z0)
Tuples:

F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
U7'(f22_out1(z0), z1, z2) → c
S tuples:

F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c
K tuples:

F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
Defined Rule Symbols:

f2_in, U1, f23_in, U2, f22_in, U3, f40_in, U4, f14_in, U5, U6, f36_in, U7, U8

Defined Pair Symbols:

F36_IN, F2_IN, F14_IN, U5', U7', F23_IN, F22_IN, F40_IN

Compound Symbols:

c15, c, c4, c7, c10, c

(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
We considered the (Usable) Rules:

f22_in(z0, 0) → f22_out1(0)
f22_in(z0, s(z1)) → U3(f36_in(z0, z1), z0, s(z1))
f36_in(z0, z1) → U7(f22_in(z0, z1), z0, z1)
U3(f36_out1(z0, z1), z2, s(z3)) → f22_out1(z1)
U7(f22_out1(z0), z1, z2) → U8(f40_in(z0, z1), z1, z2, z0)
f40_in(z0, 0) → f40_out1(z0)
f40_in(z0, s(z1)) → U4(f40_in(z0, z1), z0, s(z1))
U8(f40_out1(z0), z1, z2, z3) → f36_out1(z3, z0)
U4(f40_out1(z0), z1, s(z2)) → f40_out1(s(z0))
And the Tuples:

F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
U7'(f22_out1(z0), z1, z2) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F14_IN(x1, x2)) = [2]x2   
POL(F22_IN(x1, x2)) = [2]x2   
POL(F23_IN(x1, x2)) = 0   
POL(F2_IN(x1, x2)) = x1 + [2]x2   
POL(F36_IN(x1, x2)) = [3] + [2]x2   
POL(F40_IN(x1, x2)) = 0   
POL(U3(x1, x2, x3)) = 0   
POL(U4(x1, x2, x3)) = 0   
POL(U5'(x1, x2, x3)) = x3   
POL(U7(x1, x2, x3)) = 0   
POL(U7'(x1, x2, x3)) = 0   
POL(U8(x1, x2, x3, x4)) = 0   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c10(x1)) = x1   
POL(c15(x1, x2)) = x1 + x2   
POL(c4(x1)) = x1   
POL(c7(x1)) = x1   
POL(f22_in(x1, x2)) = 0   
POL(f22_out1(x1)) = 0   
POL(f36_in(x1, x2)) = 0   
POL(f36_out1(x1, x2)) = 0   
POL(f40_in(x1, x2)) = 0   
POL(f40_out1(x1)) = 0   
POL(s(x1)) = [2] + x1   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, 0) → f2_out1(0)
f2_in(z0, s(z1)) → U1(f14_in(z0, z1), z0, s(z1))
U1(f14_out1(z0, z1), z2, s(z3)) → f2_out1(z1)
f23_in(z0, 0) → f23_out1(z0)
f23_in(z0, s(z1)) → U2(f23_in(z0, z1), z0, s(z1))
U2(f23_out1(z0), z1, s(z2)) → f23_out1(s(z0))
f22_in(z0, 0) → f22_out1(0)
f22_in(z0, s(z1)) → U3(f36_in(z0, z1), z0, s(z1))
U3(f36_out1(z0, z1), z2, s(z3)) → f22_out1(z1)
f40_in(z0, 0) → f40_out1(z0)
f40_in(z0, s(z1)) → U4(f40_in(z0, z1), z0, s(z1))
U4(f40_out1(z0), z1, s(z2)) → f40_out1(s(z0))
f14_in(z0, z1) → U5(f22_in(z0, z1), z0, z1)
U5(f22_out1(z0), z1, z2) → U6(f23_in(z0, z1), z1, z2, z0)
U6(f23_out1(z0), z1, z2, z3) → f14_out1(z3, z0)
f36_in(z0, z1) → U7(f22_in(z0, z1), z0, z1)
U7(f22_out1(z0), z1, z2) → U8(f40_in(z0, z1), z1, z2, z0)
U8(f40_out1(z0), z1, z2, z3) → f36_out1(z3, z0)
Tuples:

F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
U7'(f22_out1(z0), z1, z2) → c
S tuples:

U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c
K tuples:

F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
Defined Rule Symbols:

f2_in, U1, f23_in, U2, f22_in, U3, f40_in, U4, f14_in, U5, U6, f36_in, U7, U8

Defined Pair Symbols:

F36_IN, F2_IN, F14_IN, U5', U7', F23_IN, F22_IN, F40_IN

Compound Symbols:

c15, c, c4, c7, c10, c

(15) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, 0) → f2_out1(0)
f2_in(z0, s(z1)) → U1(f14_in(z0, z1), z0, s(z1))
U1(f14_out1(z0, z1), z2, s(z3)) → f2_out1(z1)
f23_in(z0, 0) → f23_out1(z0)
f23_in(z0, s(z1)) → U2(f23_in(z0, z1), z0, s(z1))
U2(f23_out1(z0), z1, s(z2)) → f23_out1(s(z0))
f22_in(z0, 0) → f22_out1(0)
f22_in(z0, s(z1)) → U3(f36_in(z0, z1), z0, s(z1))
U3(f36_out1(z0, z1), z2, s(z3)) → f22_out1(z1)
f40_in(z0, 0) → f40_out1(z0)
f40_in(z0, s(z1)) → U4(f40_in(z0, z1), z0, s(z1))
U4(f40_out1(z0), z1, s(z2)) → f40_out1(s(z0))
f14_in(z0, z1) → U5(f22_in(z0, z1), z0, z1)
U5(f22_out1(z0), z1, z2) → U6(f23_in(z0, z1), z1, z2, z0)
U6(f23_out1(z0), z1, z2, z3) → f14_out1(z3, z0)
f36_in(z0, z1) → U7(f22_in(z0, z1), z0, z1)
U7(f22_out1(z0), z1, z2) → U8(f40_in(z0, z1), z1, z2, z0)
U8(f40_out1(z0), z1, z2, z3) → f36_out1(z3, z0)
Tuples:

F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
U7'(f22_out1(z0), z1, z2) → c
S tuples:

F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
K tuples:

F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c
Defined Rule Symbols:

f2_in, U1, f23_in, U2, f22_in, U3, f40_in, U4, f14_in, U5, U6, f36_in, U7, U8

Defined Pair Symbols:

F36_IN, F2_IN, F14_IN, U5', U7', F23_IN, F22_IN, F40_IN

Compound Symbols:

c15, c, c4, c7, c10, c

(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
We considered the (Usable) Rules:

f22_in(z0, 0) → f22_out1(0)
f22_in(z0, s(z1)) → U3(f36_in(z0, z1), z0, s(z1))
f36_in(z0, z1) → U7(f22_in(z0, z1), z0, z1)
U3(f36_out1(z0, z1), z2, s(z3)) → f22_out1(z1)
U7(f22_out1(z0), z1, z2) → U8(f40_in(z0, z1), z1, z2, z0)
f40_in(z0, 0) → f40_out1(z0)
f40_in(z0, s(z1)) → U4(f40_in(z0, z1), z0, s(z1))
U8(f40_out1(z0), z1, z2, z3) → f36_out1(z3, z0)
U4(f40_out1(z0), z1, s(z2)) → f40_out1(s(z0))
And the Tuples:

F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
U7'(f22_out1(z0), z1, z2) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F14_IN(x1, x2)) = [1] + x1 + x2 + x22 + x1·x2 + x12   
POL(F22_IN(x1, x2)) = x1·x2   
POL(F23_IN(x1, x2)) = 0   
POL(F2_IN(x1, x2)) = x1 + x22 + x1·x2 + x12   
POL(F36_IN(x1, x2)) = x1 + x1·x2   
POL(F40_IN(x1, x2)) = x2   
POL(U3(x1, x2, x3)) = 0   
POL(U4(x1, x2, x3)) = 0   
POL(U5'(x1, x2, x3)) = x32   
POL(U7(x1, x2, x3)) = 0   
POL(U7'(x1, x2, x3)) = x2   
POL(U8(x1, x2, x3, x4)) = 0   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c10(x1)) = x1   
POL(c15(x1, x2)) = x1 + x2   
POL(c4(x1)) = x1   
POL(c7(x1)) = x1   
POL(f22_in(x1, x2)) = 0   
POL(f22_out1(x1)) = 0   
POL(f36_in(x1, x2)) = 0   
POL(f36_out1(x1, x2)) = x2   
POL(f40_in(x1, x2)) = 0   
POL(f40_out1(x1)) = 0   
POL(s(x1)) = [1] + x1   

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, 0) → f2_out1(0)
f2_in(z0, s(z1)) → U1(f14_in(z0, z1), z0, s(z1))
U1(f14_out1(z0, z1), z2, s(z3)) → f2_out1(z1)
f23_in(z0, 0) → f23_out1(z0)
f23_in(z0, s(z1)) → U2(f23_in(z0, z1), z0, s(z1))
U2(f23_out1(z0), z1, s(z2)) → f23_out1(s(z0))
f22_in(z0, 0) → f22_out1(0)
f22_in(z0, s(z1)) → U3(f36_in(z0, z1), z0, s(z1))
U3(f36_out1(z0, z1), z2, s(z3)) → f22_out1(z1)
f40_in(z0, 0) → f40_out1(z0)
f40_in(z0, s(z1)) → U4(f40_in(z0, z1), z0, s(z1))
U4(f40_out1(z0), z1, s(z2)) → f40_out1(s(z0))
f14_in(z0, z1) → U5(f22_in(z0, z1), z0, z1)
U5(f22_out1(z0), z1, z2) → U6(f23_in(z0, z1), z1, z2, z0)
U6(f23_out1(z0), z1, z2, z3) → f14_out1(z3, z0)
f36_in(z0, z1) → U7(f22_in(z0, z1), z0, z1)
U7(f22_out1(z0), z1, z2) → U8(f40_in(z0, z1), z1, z2, z0)
U8(f40_out1(z0), z1, z2, z3) → f36_out1(z3, z0)
Tuples:

F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
U7'(f22_out1(z0), z1, z2) → c
S tuples:none
K tuples:

F2_IN(z0, s(z1)) → c(F14_IN(z0, z1))
F14_IN(z0, z1) → c(U5'(f22_in(z0, z1), z0, z1))
F14_IN(z0, z1) → c(F22_IN(z0, z1))
U5'(f22_out1(z0), z1, z2) → c(F23_IN(z0, z1))
F2_IN(z0, s(z1)) → c
U5'(f22_out1(z0), z1, z2) → c
F23_IN(z0, s(z1)) → c4(F23_IN(z0, z1))
F36_IN(z0, z1) → c15(U7'(f22_in(z0, z1), z0, z1), F22_IN(z0, z1))
F22_IN(z0, s(z1)) → c7(F36_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c(F40_IN(z0, z1))
U7'(f22_out1(z0), z1, z2) → c
F40_IN(z0, s(z1)) → c10(F40_IN(z0, z1))
Defined Rule Symbols:

f2_in, U1, f23_in, U2, f22_in, U3, f40_in, U4, f14_in, U5, U6, f36_in, U7, U8

Defined Pair Symbols:

F36_IN, F2_IN, F14_IN, U5', U7', F23_IN, F22_IN, F40_IN

Compound Symbols:

c15, c, c4, c7, c10, c

(19) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(20) BOUNDS(O(1), O(1))

(21) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, 0) → f1_out1(0)
f1_in(z0, s(0)) → U1(f18_in(z0), z0, s(0))
f1_in(z0, s(s(z1))) → U2(f41_in(z0, z1), z0, s(s(z1)))
U1(f18_out1(z0), z1, s(0)) → f1_out1(z0)
U1(f18_out2(z0, z1), z2, s(0)) → f1_out1(z1)
U2(f41_out1(z0, z1, z2), z3, s(s(z4))) → f1_out1(z2)
f65_in(z0, 0) → f65_out1(z0)
f65_in(z0, s(z1)) → U3(f65_in(z0, z1), z0, s(z1))
U3(f65_out1(z0), z1, s(z2)) → f65_out1(s(z0))
f20_in(0) → f20_out1(0)
f20_in(s(z0)) → U4(f20_in(z0), s(z0))
U4(f20_out1(z0), s(z1)) → f20_out1(s(z0))
f45_in(z0, 0) → f45_out1(0)
f45_in(z0, s(z1)) → U5(f58_in(z0, z1), z0, s(z1))
U5(f58_out1(z0, z1), z2, s(z3)) → f45_out1(z1)
f76_in(z0, 0) → f76_out1(z0)
f76_in(z0, s(z1)) → U6(f76_in(z0, z1), z0, s(z1))
U6(f76_out1(z0), z1, s(z2)) → f76_out1(s(z0))
f41_in(z0, z1) → U7(f45_in(z0, z1), z0, z1)
U7(f45_out1(z0), z1, z2) → U8(f46_in(z0, z1), z1, z2, z0)
U8(f46_out1(z0, z1), z2, z3, z4) → f41_out1(z4, z0, z1)
f46_in(z0, z1) → U9(f65_in(z0, z1), z0, z1)
U9(f65_out1(z0), z1, z2) → U10(f76_in(z0, z2), z1, z2, z0)
U10(f76_out1(z0), z1, z2, z3) → f46_out1(z3, z0)
f58_in(z0, z1) → U11(f45_in(z0, z1), z0, z1)
U11(f45_out1(z0), z1, z2) → U12(f65_in(z0, z1), z1, z2, z0)
U12(f65_out1(z0), z1, z2, z3) → f58_out1(z3, z0)
f18_in(z0) → U13(f20_in(z0), f21_in(z0), z0)
U13(f20_out1(z0), z1, z2) → f18_out1(z0)
U13(z0, f21_out1(z1, z2), z3) → f18_out2(z1, z2)
Tuples:

F1_IN(z0, s(0)) → c1(U1'(f18_in(z0), z0, s(0)), F18_IN(z0))
F1_IN(z0, s(s(z1))) → c2(U2'(f41_in(z0, z1), z0, s(s(z1))), F41_IN(z0, z1))
F65_IN(z0, s(z1)) → c7(U3'(f65_in(z0, z1), z0, s(z1)), F65_IN(z0, z1))
F20_IN(s(z0)) → c10(U4'(f20_in(z0), s(z0)), F20_IN(z0))
F45_IN(z0, s(z1)) → c13(U5'(f58_in(z0, z1), z0, s(z1)), F58_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(U6'(f76_in(z0, z1), z0, s(z1)), F76_IN(z0, z1))
F41_IN(z0, z1) → c18(U7'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c19(U8'(f46_in(z0, z1), z1, z2, z0), F46_IN(z0, z1))
F46_IN(z0, z1) → c21(U9'(f65_in(z0, z1), z0, z1), F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c22(U10'(f76_in(z0, z2), z1, z2, z0), F76_IN(z0, z2))
F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
U11'(f45_out1(z0), z1, z2) → c25(U12'(f65_in(z0, z1), z1, z2, z0), F65_IN(z0, z1))
F18_IN(z0) → c27(U13'(f20_in(z0), f21_in(z0), z0), F20_IN(z0))
S tuples:

F1_IN(z0, s(0)) → c1(U1'(f18_in(z0), z0, s(0)), F18_IN(z0))
F1_IN(z0, s(s(z1))) → c2(U2'(f41_in(z0, z1), z0, s(s(z1))), F41_IN(z0, z1))
F65_IN(z0, s(z1)) → c7(U3'(f65_in(z0, z1), z0, s(z1)), F65_IN(z0, z1))
F20_IN(s(z0)) → c10(U4'(f20_in(z0), s(z0)), F20_IN(z0))
F45_IN(z0, s(z1)) → c13(U5'(f58_in(z0, z1), z0, s(z1)), F58_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(U6'(f76_in(z0, z1), z0, s(z1)), F76_IN(z0, z1))
F41_IN(z0, z1) → c18(U7'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c19(U8'(f46_in(z0, z1), z1, z2, z0), F46_IN(z0, z1))
F46_IN(z0, z1) → c21(U9'(f65_in(z0, z1), z0, z1), F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c22(U10'(f76_in(z0, z2), z1, z2, z0), F76_IN(z0, z2))
F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
U11'(f45_out1(z0), z1, z2) → c25(U12'(f65_in(z0, z1), z1, z2, z0), F65_IN(z0, z1))
F18_IN(z0) → c27(U13'(f20_in(z0), f21_in(z0), z0), F20_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f65_in, U3, f20_in, U4, f45_in, U5, f76_in, U6, f41_in, U7, U8, f46_in, U9, U10, f58_in, U11, U12, f18_in, U13

Defined Pair Symbols:

F1_IN, F65_IN, F20_IN, F45_IN, F76_IN, F41_IN, U7', F46_IN, U9', F58_IN, U11', F18_IN

Compound Symbols:

c1, c2, c7, c10, c13, c16, c18, c19, c21, c22, c24, c25, c27

(23) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, 0) → f1_out1(0)
f1_in(z0, s(0)) → U1(f18_in(z0), z0, s(0))
f1_in(z0, s(s(z1))) → U2(f41_in(z0, z1), z0, s(s(z1)))
U1(f18_out1(z0), z1, s(0)) → f1_out1(z0)
U1(f18_out2(z0, z1), z2, s(0)) → f1_out1(z1)
U2(f41_out1(z0, z1, z2), z3, s(s(z4))) → f1_out1(z2)
f65_in(z0, 0) → f65_out1(z0)
f65_in(z0, s(z1)) → U3(f65_in(z0, z1), z0, s(z1))
U3(f65_out1(z0), z1, s(z2)) → f65_out1(s(z0))
f20_in(0) → f20_out1(0)
f20_in(s(z0)) → U4(f20_in(z0), s(z0))
U4(f20_out1(z0), s(z1)) → f20_out1(s(z0))
f45_in(z0, 0) → f45_out1(0)
f45_in(z0, s(z1)) → U5(f58_in(z0, z1), z0, s(z1))
U5(f58_out1(z0, z1), z2, s(z3)) → f45_out1(z1)
f76_in(z0, 0) → f76_out1(z0)
f76_in(z0, s(z1)) → U6(f76_in(z0, z1), z0, s(z1))
U6(f76_out1(z0), z1, s(z2)) → f76_out1(s(z0))
f41_in(z0, z1) → U7(f45_in(z0, z1), z0, z1)
U7(f45_out1(z0), z1, z2) → U8(f46_in(z0, z1), z1, z2, z0)
U8(f46_out1(z0, z1), z2, z3, z4) → f41_out1(z4, z0, z1)
f46_in(z0, z1) → U9(f65_in(z0, z1), z0, z1)
U9(f65_out1(z0), z1, z2) → U10(f76_in(z0, z2), z1, z2, z0)
U10(f76_out1(z0), z1, z2, z3) → f46_out1(z3, z0)
f58_in(z0, z1) → U11(f45_in(z0, z1), z0, z1)
U11(f45_out1(z0), z1, z2) → U12(f65_in(z0, z1), z1, z2, z0)
U12(f65_out1(z0), z1, z2, z3) → f58_out1(z3, z0)
f18_in(z0) → U13(f20_in(z0), f21_in(z0), z0)
U13(f20_out1(z0), z1, z2) → f18_out1(z0)
U13(z0, f21_out1(z1, z2), z3) → f18_out2(z1, z2)
Tuples:

F65_IN(z0, s(z1)) → c7(U3'(f65_in(z0, z1), z0, s(z1)), F65_IN(z0, z1))
F20_IN(s(z0)) → c10(U4'(f20_in(z0), s(z0)), F20_IN(z0))
F45_IN(z0, s(z1)) → c13(U5'(f58_in(z0, z1), z0, s(z1)), F58_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(U6'(f76_in(z0, z1), z0, s(z1)), F76_IN(z0, z1))
F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F1_IN(z0, s(0)) → c(U1'(f18_in(z0), z0, s(0)))
F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(U2'(f41_in(z0, z1), z0, s(s(z1))))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(U8'(f46_in(z0, z1), z1, z2, z0))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(U10'(f76_in(z0, z2), z1, z2, z0))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
U11'(f45_out1(z0), z1, z2) → c(U12'(f65_in(z0, z1), z1, z2, z0))
U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
F18_IN(z0) → c(U13'(f20_in(z0), f21_in(z0), z0))
F18_IN(z0) → c(F20_IN(z0))
S tuples:

F65_IN(z0, s(z1)) → c7(U3'(f65_in(z0, z1), z0, s(z1)), F65_IN(z0, z1))
F20_IN(s(z0)) → c10(U4'(f20_in(z0), s(z0)), F20_IN(z0))
F45_IN(z0, s(z1)) → c13(U5'(f58_in(z0, z1), z0, s(z1)), F58_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(U6'(f76_in(z0, z1), z0, s(z1)), F76_IN(z0, z1))
F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F1_IN(z0, s(0)) → c(U1'(f18_in(z0), z0, s(0)))
F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(U2'(f41_in(z0, z1), z0, s(s(z1))))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(U8'(f46_in(z0, z1), z1, z2, z0))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(U10'(f76_in(z0, z2), z1, z2, z0))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
U11'(f45_out1(z0), z1, z2) → c(U12'(f65_in(z0, z1), z1, z2, z0))
U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
F18_IN(z0) → c(U13'(f20_in(z0), f21_in(z0), z0))
F18_IN(z0) → c(F20_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f65_in, U3, f20_in, U4, f45_in, U5, f76_in, U6, f41_in, U7, U8, f46_in, U9, U10, f58_in, U11, U12, f18_in, U13

Defined Pair Symbols:

F65_IN, F20_IN, F45_IN, F76_IN, F58_IN, F1_IN, F41_IN, U7', F46_IN, U9', U11', F18_IN

Compound Symbols:

c7, c10, c13, c16, c24, c

(25) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 10 trailing tuple parts

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, 0) → f1_out1(0)
f1_in(z0, s(0)) → U1(f18_in(z0), z0, s(0))
f1_in(z0, s(s(z1))) → U2(f41_in(z0, z1), z0, s(s(z1)))
U1(f18_out1(z0), z1, s(0)) → f1_out1(z0)
U1(f18_out2(z0, z1), z2, s(0)) → f1_out1(z1)
U2(f41_out1(z0, z1, z2), z3, s(s(z4))) → f1_out1(z2)
f65_in(z0, 0) → f65_out1(z0)
f65_in(z0, s(z1)) → U3(f65_in(z0, z1), z0, s(z1))
U3(f65_out1(z0), z1, s(z2)) → f65_out1(s(z0))
f20_in(0) → f20_out1(0)
f20_in(s(z0)) → U4(f20_in(z0), s(z0))
U4(f20_out1(z0), s(z1)) → f20_out1(s(z0))
f45_in(z0, 0) → f45_out1(0)
f45_in(z0, s(z1)) → U5(f58_in(z0, z1), z0, s(z1))
U5(f58_out1(z0, z1), z2, s(z3)) → f45_out1(z1)
f76_in(z0, 0) → f76_out1(z0)
f76_in(z0, s(z1)) → U6(f76_in(z0, z1), z0, s(z1))
U6(f76_out1(z0), z1, s(z2)) → f76_out1(s(z0))
f41_in(z0, z1) → U7(f45_in(z0, z1), z0, z1)
U7(f45_out1(z0), z1, z2) → U8(f46_in(z0, z1), z1, z2, z0)
U8(f46_out1(z0, z1), z2, z3, z4) → f41_out1(z4, z0, z1)
f46_in(z0, z1) → U9(f65_in(z0, z1), z0, z1)
U9(f65_out1(z0), z1, z2) → U10(f76_in(z0, z2), z1, z2, z0)
U10(f76_out1(z0), z1, z2, z3) → f46_out1(z3, z0)
f58_in(z0, z1) → U11(f45_in(z0, z1), z0, z1)
U11(f45_out1(z0), z1, z2) → U12(f65_in(z0, z1), z1, z2, z0)
U12(f65_out1(z0), z1, z2, z3) → f58_out1(z3, z0)
f18_in(z0) → U13(f20_in(z0), f21_in(z0), z0)
U13(f20_out1(z0), z1, z2) → f18_out1(z0)
U13(z0, f21_out1(z1, z2), z3) → f18_out2(z1, z2)
Tuples:

F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
F18_IN(z0) → c(F20_IN(z0))
F65_IN(z0, s(z1)) → c7(F65_IN(z0, z1))
F20_IN(s(z0)) → c10(F20_IN(z0))
F45_IN(z0, s(z1)) → c13(F58_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(F76_IN(z0, z1))
F1_IN(z0, s(0)) → c
F1_IN(z0, s(s(z1))) → c
U7'(f45_out1(z0), z1, z2) → c
U9'(f65_out1(z0), z1, z2) → c
U11'(f45_out1(z0), z1, z2) → c
F18_IN(z0) → c
S tuples:

F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
F18_IN(z0) → c(F20_IN(z0))
F65_IN(z0, s(z1)) → c7(F65_IN(z0, z1))
F20_IN(s(z0)) → c10(F20_IN(z0))
F45_IN(z0, s(z1)) → c13(F58_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(F76_IN(z0, z1))
F1_IN(z0, s(0)) → c
F1_IN(z0, s(s(z1))) → c
U7'(f45_out1(z0), z1, z2) → c
U9'(f65_out1(z0), z1, z2) → c
U11'(f45_out1(z0), z1, z2) → c
F18_IN(z0) → c
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f65_in, U3, f20_in, U4, f45_in, U5, f76_in, U6, f41_in, U7, U8, f46_in, U9, U10, f58_in, U11, U12, f18_in, U13

Defined Pair Symbols:

F58_IN, F1_IN, F41_IN, U7', F46_IN, U9', U11', F18_IN, F65_IN, F20_IN, F45_IN, F76_IN

Compound Symbols:

c24, c, c7, c10, c13, c16, c

(27) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
F18_IN(z0) → c(F20_IN(z0))
F1_IN(z0, s(0)) → c
F1_IN(z0, s(s(z1))) → c
U7'(f45_out1(z0), z1, z2) → c
U9'(f65_out1(z0), z1, z2) → c
F18_IN(z0) → c
F18_IN(z0) → c(F20_IN(z0))
F18_IN(z0) → c
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
U9'(f65_out1(z0), z1, z2) → c

(28) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, 0) → f1_out1(0)
f1_in(z0, s(0)) → U1(f18_in(z0), z0, s(0))
f1_in(z0, s(s(z1))) → U2(f41_in(z0, z1), z0, s(s(z1)))
U1(f18_out1(z0), z1, s(0)) → f1_out1(z0)
U1(f18_out2(z0, z1), z2, s(0)) → f1_out1(z1)
U2(f41_out1(z0, z1, z2), z3, s(s(z4))) → f1_out1(z2)
f65_in(z0, 0) → f65_out1(z0)
f65_in(z0, s(z1)) → U3(f65_in(z0, z1), z0, s(z1))
U3(f65_out1(z0), z1, s(z2)) → f65_out1(s(z0))
f20_in(0) → f20_out1(0)
f20_in(s(z0)) → U4(f20_in(z0), s(z0))
U4(f20_out1(z0), s(z1)) → f20_out1(s(z0))
f45_in(z0, 0) → f45_out1(0)
f45_in(z0, s(z1)) → U5(f58_in(z0, z1), z0, s(z1))
U5(f58_out1(z0, z1), z2, s(z3)) → f45_out1(z1)
f76_in(z0, 0) → f76_out1(z0)
f76_in(z0, s(z1)) → U6(f76_in(z0, z1), z0, s(z1))
U6(f76_out1(z0), z1, s(z2)) → f76_out1(s(z0))
f41_in(z0, z1) → U7(f45_in(z0, z1), z0, z1)
U7(f45_out1(z0), z1, z2) → U8(f46_in(z0, z1), z1, z2, z0)
U8(f46_out1(z0, z1), z2, z3, z4) → f41_out1(z4, z0, z1)
f46_in(z0, z1) → U9(f65_in(z0, z1), z0, z1)
U9(f65_out1(z0), z1, z2) → U10(f76_in(z0, z2), z1, z2, z0)
U10(f76_out1(z0), z1, z2, z3) → f46_out1(z3, z0)
f58_in(z0, z1) → U11(f45_in(z0, z1), z0, z1)
U11(f45_out1(z0), z1, z2) → U12(f65_in(z0, z1), z1, z2, z0)
U12(f65_out1(z0), z1, z2, z3) → f58_out1(z3, z0)
f18_in(z0) → U13(f20_in(z0), f21_in(z0), z0)
U13(f20_out1(z0), z1, z2) → f18_out1(z0)
U13(z0, f21_out1(z1, z2), z3) → f18_out2(z1, z2)
Tuples:

F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
F18_IN(z0) → c(F20_IN(z0))
F65_IN(z0, s(z1)) → c7(F65_IN(z0, z1))
F20_IN(s(z0)) → c10(F20_IN(z0))
F45_IN(z0, s(z1)) → c13(F58_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(F76_IN(z0, z1))
F1_IN(z0, s(0)) → c
F1_IN(z0, s(s(z1))) → c
U7'(f45_out1(z0), z1, z2) → c
U9'(f65_out1(z0), z1, z2) → c
U11'(f45_out1(z0), z1, z2) → c
F18_IN(z0) → c
S tuples:

F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
F65_IN(z0, s(z1)) → c7(F65_IN(z0, z1))
F20_IN(s(z0)) → c10(F20_IN(z0))
F45_IN(z0, s(z1)) → c13(F58_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(F76_IN(z0, z1))
U11'(f45_out1(z0), z1, z2) → c
K tuples:

F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
F18_IN(z0) → c(F20_IN(z0))
F1_IN(z0, s(0)) → c
F1_IN(z0, s(s(z1))) → c
U7'(f45_out1(z0), z1, z2) → c
U9'(f65_out1(z0), z1, z2) → c
F18_IN(z0) → c
Defined Rule Symbols:

f1_in, U1, U2, f65_in, U3, f20_in, U4, f45_in, U5, f76_in, U6, f41_in, U7, U8, f46_in, U9, U10, f58_in, U11, U12, f18_in, U13

Defined Pair Symbols:

F58_IN, F1_IN, F41_IN, U7', F46_IN, U9', U11', F18_IN, F65_IN, F20_IN, F45_IN, F76_IN

Compound Symbols:

c24, c, c7, c10, c13, c16, c

(29) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F20_IN(s(z0)) → c10(F20_IN(z0))
F45_IN(z0, s(z1)) → c13(F58_IN(z0, z1))
We considered the (Usable) Rules:

f65_in(z0, 0) → f65_out1(z0)
f65_in(z0, s(z1)) → U3(f65_in(z0, z1), z0, s(z1))
U3(f65_out1(z0), z1, s(z2)) → f65_out1(s(z0))
f45_in(z0, 0) → f45_out1(0)
f45_in(z0, s(z1)) → U5(f58_in(z0, z1), z0, s(z1))
f58_in(z0, z1) → U11(f45_in(z0, z1), z0, z1)
U5(f58_out1(z0, z1), z2, s(z3)) → f45_out1(z1)
U11(f45_out1(z0), z1, z2) → U12(f65_in(z0, z1), z1, z2, z0)
U12(f65_out1(z0), z1, z2, z3) → f58_out1(z3, z0)
And the Tuples:

F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
F18_IN(z0) → c(F20_IN(z0))
F65_IN(z0, s(z1)) → c7(F65_IN(z0, z1))
F20_IN(s(z0)) → c10(F20_IN(z0))
F45_IN(z0, s(z1)) → c13(F58_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(F76_IN(z0, z1))
F1_IN(z0, s(0)) → c
F1_IN(z0, s(s(z1))) → c
U7'(f45_out1(z0), z1, z2) → c
U9'(f65_out1(z0), z1, z2) → c
U11'(f45_out1(z0), z1, z2) → c
F18_IN(z0) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F18_IN(x1)) = [2] + [3]x1   
POL(F1_IN(x1, x2)) = [1] + [3]x1 + [2]x2   
POL(F20_IN(x1)) = [2] + [2]x1   
POL(F41_IN(x1, x2)) = x1 + [2]x2   
POL(F45_IN(x1, x2)) = x2   
POL(F46_IN(x1, x2)) = x2   
POL(F58_IN(x1, x2)) = [1] + x2   
POL(F65_IN(x1, x2)) = 0   
POL(F76_IN(x1, x2)) = 0   
POL(U11(x1, x2, x3)) = 0   
POL(U11'(x1, x2, x3)) = 0   
POL(U12(x1, x2, x3, x4)) = 0   
POL(U3(x1, x2, x3)) = 0   
POL(U5(x1, x2, x3)) = 0   
POL(U7'(x1, x2, x3)) = x2 + [2]x3   
POL(U9'(x1, x2, x3)) = 0   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c10(x1)) = x1   
POL(c13(x1)) = x1   
POL(c16(x1)) = x1   
POL(c24(x1, x2)) = x1 + x2   
POL(c7(x1)) = x1   
POL(f45_in(x1, x2)) = 0   
POL(f45_out1(x1)) = 0   
POL(f58_in(x1, x2)) = 0   
POL(f58_out1(x1, x2)) = 0   
POL(f65_in(x1, x2)) = 0   
POL(f65_out1(x1)) = 0   
POL(s(x1)) = [2] + x1   

(30) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, 0) → f1_out1(0)
f1_in(z0, s(0)) → U1(f18_in(z0), z0, s(0))
f1_in(z0, s(s(z1))) → U2(f41_in(z0, z1), z0, s(s(z1)))
U1(f18_out1(z0), z1, s(0)) → f1_out1(z0)
U1(f18_out2(z0, z1), z2, s(0)) → f1_out1(z1)
U2(f41_out1(z0, z1, z2), z3, s(s(z4))) → f1_out1(z2)
f65_in(z0, 0) → f65_out1(z0)
f65_in(z0, s(z1)) → U3(f65_in(z0, z1), z0, s(z1))
U3(f65_out1(z0), z1, s(z2)) → f65_out1(s(z0))
f20_in(0) → f20_out1(0)
f20_in(s(z0)) → U4(f20_in(z0), s(z0))
U4(f20_out1(z0), s(z1)) → f20_out1(s(z0))
f45_in(z0, 0) → f45_out1(0)
f45_in(z0, s(z1)) → U5(f58_in(z0, z1), z0, s(z1))
U5(f58_out1(z0, z1), z2, s(z3)) → f45_out1(z1)
f76_in(z0, 0) → f76_out1(z0)
f76_in(z0, s(z1)) → U6(f76_in(z0, z1), z0, s(z1))
U6(f76_out1(z0), z1, s(z2)) → f76_out1(s(z0))
f41_in(z0, z1) → U7(f45_in(z0, z1), z0, z1)
U7(f45_out1(z0), z1, z2) → U8(f46_in(z0, z1), z1, z2, z0)
U8(f46_out1(z0, z1), z2, z3, z4) → f41_out1(z4, z0, z1)
f46_in(z0, z1) → U9(f65_in(z0, z1), z0, z1)
U9(f65_out1(z0), z1, z2) → U10(f76_in(z0, z2), z1, z2, z0)
U10(f76_out1(z0), z1, z2, z3) → f46_out1(z3, z0)
f58_in(z0, z1) → U11(f45_in(z0, z1), z0, z1)
U11(f45_out1(z0), z1, z2) → U12(f65_in(z0, z1), z1, z2, z0)
U12(f65_out1(z0), z1, z2, z3) → f58_out1(z3, z0)
f18_in(z0) → U13(f20_in(z0), f21_in(z0), z0)
U13(f20_out1(z0), z1, z2) → f18_out1(z0)
U13(z0, f21_out1(z1, z2), z3) → f18_out2(z1, z2)
Tuples:

F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
F18_IN(z0) → c(F20_IN(z0))
F65_IN(z0, s(z1)) → c7(F65_IN(z0, z1))
F20_IN(s(z0)) → c10(F20_IN(z0))
F45_IN(z0, s(z1)) → c13(F58_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(F76_IN(z0, z1))
F1_IN(z0, s(0)) → c
F1_IN(z0, s(s(z1))) → c
U7'(f45_out1(z0), z1, z2) → c
U9'(f65_out1(z0), z1, z2) → c
U11'(f45_out1(z0), z1, z2) → c
F18_IN(z0) → c
S tuples:

U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
F65_IN(z0, s(z1)) → c7(F65_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(F76_IN(z0, z1))
U11'(f45_out1(z0), z1, z2) → c
K tuples:

F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
F18_IN(z0) → c(F20_IN(z0))
F1_IN(z0, s(0)) → c
F1_IN(z0, s(s(z1))) → c
U7'(f45_out1(z0), z1, z2) → c
U9'(f65_out1(z0), z1, z2) → c
F18_IN(z0) → c
F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F20_IN(s(z0)) → c10(F20_IN(z0))
F45_IN(z0, s(z1)) → c13(F58_IN(z0, z1))
Defined Rule Symbols:

f1_in, U1, U2, f65_in, U3, f20_in, U4, f45_in, U5, f76_in, U6, f41_in, U7, U8, f46_in, U9, U10, f58_in, U11, U12, f18_in, U13

Defined Pair Symbols:

F58_IN, F1_IN, F41_IN, U7', F46_IN, U9', U11', F18_IN, F65_IN, F20_IN, F45_IN, F76_IN

Compound Symbols:

c24, c, c7, c10, c13, c16, c

(31) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
U11'(f45_out1(z0), z1, z2) → c

(32) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, 0) → f1_out1(0)
f1_in(z0, s(0)) → U1(f18_in(z0), z0, s(0))
f1_in(z0, s(s(z1))) → U2(f41_in(z0, z1), z0, s(s(z1)))
U1(f18_out1(z0), z1, s(0)) → f1_out1(z0)
U1(f18_out2(z0, z1), z2, s(0)) → f1_out1(z1)
U2(f41_out1(z0, z1, z2), z3, s(s(z4))) → f1_out1(z2)
f65_in(z0, 0) → f65_out1(z0)
f65_in(z0, s(z1)) → U3(f65_in(z0, z1), z0, s(z1))
U3(f65_out1(z0), z1, s(z2)) → f65_out1(s(z0))
f20_in(0) → f20_out1(0)
f20_in(s(z0)) → U4(f20_in(z0), s(z0))
U4(f20_out1(z0), s(z1)) → f20_out1(s(z0))
f45_in(z0, 0) → f45_out1(0)
f45_in(z0, s(z1)) → U5(f58_in(z0, z1), z0, s(z1))
U5(f58_out1(z0, z1), z2, s(z3)) → f45_out1(z1)
f76_in(z0, 0) → f76_out1(z0)
f76_in(z0, s(z1)) → U6(f76_in(z0, z1), z0, s(z1))
U6(f76_out1(z0), z1, s(z2)) → f76_out1(s(z0))
f41_in(z0, z1) → U7(f45_in(z0, z1), z0, z1)
U7(f45_out1(z0), z1, z2) → U8(f46_in(z0, z1), z1, z2, z0)
U8(f46_out1(z0, z1), z2, z3, z4) → f41_out1(z4, z0, z1)
f46_in(z0, z1) → U9(f65_in(z0, z1), z0, z1)
U9(f65_out1(z0), z1, z2) → U10(f76_in(z0, z2), z1, z2, z0)
U10(f76_out1(z0), z1, z2, z3) → f46_out1(z3, z0)
f58_in(z0, z1) → U11(f45_in(z0, z1), z0, z1)
U11(f45_out1(z0), z1, z2) → U12(f65_in(z0, z1), z1, z2, z0)
U12(f65_out1(z0), z1, z2, z3) → f58_out1(z3, z0)
f18_in(z0) → U13(f20_in(z0), f21_in(z0), z0)
U13(f20_out1(z0), z1, z2) → f18_out1(z0)
U13(z0, f21_out1(z1, z2), z3) → f18_out2(z1, z2)
Tuples:

F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
F18_IN(z0) → c(F20_IN(z0))
F65_IN(z0, s(z1)) → c7(F65_IN(z0, z1))
F20_IN(s(z0)) → c10(F20_IN(z0))
F45_IN(z0, s(z1)) → c13(F58_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(F76_IN(z0, z1))
F1_IN(z0, s(0)) → c
F1_IN(z0, s(s(z1))) → c
U7'(f45_out1(z0), z1, z2) → c
U9'(f65_out1(z0), z1, z2) → c
U11'(f45_out1(z0), z1, z2) → c
F18_IN(z0) → c
S tuples:

F65_IN(z0, s(z1)) → c7(F65_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(F76_IN(z0, z1))
K tuples:

F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
F18_IN(z0) → c(F20_IN(z0))
F1_IN(z0, s(0)) → c
F1_IN(z0, s(s(z1))) → c
U7'(f45_out1(z0), z1, z2) → c
U9'(f65_out1(z0), z1, z2) → c
F18_IN(z0) → c
F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F20_IN(s(z0)) → c10(F20_IN(z0))
F45_IN(z0, s(z1)) → c13(F58_IN(z0, z1))
U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
U11'(f45_out1(z0), z1, z2) → c
Defined Rule Symbols:

f1_in, U1, U2, f65_in, U3, f20_in, U4, f45_in, U5, f76_in, U6, f41_in, U7, U8, f46_in, U9, U10, f58_in, U11, U12, f18_in, U13

Defined Pair Symbols:

F58_IN, F1_IN, F41_IN, U7', F46_IN, U9', U11', F18_IN, F65_IN, F20_IN, F45_IN, F76_IN

Compound Symbols:

c24, c, c7, c10, c13, c16, c

(33) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F76_IN(z0, s(z1)) → c16(F76_IN(z0, z1))
We considered the (Usable) Rules:

f65_in(z0, 0) → f65_out1(z0)
f65_in(z0, s(z1)) → U3(f65_in(z0, z1), z0, s(z1))
U3(f65_out1(z0), z1, s(z2)) → f65_out1(s(z0))
f45_in(z0, 0) → f45_out1(0)
f45_in(z0, s(z1)) → U5(f58_in(z0, z1), z0, s(z1))
f58_in(z0, z1) → U11(f45_in(z0, z1), z0, z1)
U5(f58_out1(z0, z1), z2, s(z3)) → f45_out1(z1)
U11(f45_out1(z0), z1, z2) → U12(f65_in(z0, z1), z1, z2, z0)
U12(f65_out1(z0), z1, z2, z3) → f58_out1(z3, z0)
And the Tuples:

F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
F18_IN(z0) → c(F20_IN(z0))
F65_IN(z0, s(z1)) → c7(F65_IN(z0, z1))
F20_IN(s(z0)) → c10(F20_IN(z0))
F45_IN(z0, s(z1)) → c13(F58_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(F76_IN(z0, z1))
F1_IN(z0, s(0)) → c
F1_IN(z0, s(s(z1))) → c
U7'(f45_out1(z0), z1, z2) → c
U9'(f65_out1(z0), z1, z2) → c
U11'(f45_out1(z0), z1, z2) → c
F18_IN(z0) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F18_IN(x1)) = 0   
POL(F1_IN(x1, x2)) = [2]x1   
POL(F20_IN(x1)) = 0   
POL(F41_IN(x1, x2)) = [2]x1   
POL(F45_IN(x1, x2)) = 0   
POL(F46_IN(x1, x2)) = [2]x2   
POL(F58_IN(x1, x2)) = 0   
POL(F65_IN(x1, x2)) = 0   
POL(F76_IN(x1, x2)) = x2   
POL(U11(x1, x2, x3)) = [1] + [2]x1   
POL(U11'(x1, x2, x3)) = 0   
POL(U12(x1, x2, x3, x4)) = x1 + x4   
POL(U3(x1, x2, x3)) = 0   
POL(U5(x1, x2, x3)) = 0   
POL(U7'(x1, x2, x3)) = [2]x2   
POL(U9'(x1, x2, x3)) = x3   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c10(x1)) = x1   
POL(c13(x1)) = x1   
POL(c16(x1)) = x1   
POL(c24(x1, x2)) = x1 + x2   
POL(c7(x1)) = x1   
POL(f45_in(x1, x2)) = 0   
POL(f45_out1(x1)) = x1   
POL(f58_in(x1, x2)) = [1] + x1   
POL(f58_out1(x1, x2)) = 0   
POL(f65_in(x1, x2)) = 0   
POL(f65_out1(x1)) = x1   
POL(s(x1)) = [1] + x1   

(34) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, 0) → f1_out1(0)
f1_in(z0, s(0)) → U1(f18_in(z0), z0, s(0))
f1_in(z0, s(s(z1))) → U2(f41_in(z0, z1), z0, s(s(z1)))
U1(f18_out1(z0), z1, s(0)) → f1_out1(z0)
U1(f18_out2(z0, z1), z2, s(0)) → f1_out1(z1)
U2(f41_out1(z0, z1, z2), z3, s(s(z4))) → f1_out1(z2)
f65_in(z0, 0) → f65_out1(z0)
f65_in(z0, s(z1)) → U3(f65_in(z0, z1), z0, s(z1))
U3(f65_out1(z0), z1, s(z2)) → f65_out1(s(z0))
f20_in(0) → f20_out1(0)
f20_in(s(z0)) → U4(f20_in(z0), s(z0))
U4(f20_out1(z0), s(z1)) → f20_out1(s(z0))
f45_in(z0, 0) → f45_out1(0)
f45_in(z0, s(z1)) → U5(f58_in(z0, z1), z0, s(z1))
U5(f58_out1(z0, z1), z2, s(z3)) → f45_out1(z1)
f76_in(z0, 0) → f76_out1(z0)
f76_in(z0, s(z1)) → U6(f76_in(z0, z1), z0, s(z1))
U6(f76_out1(z0), z1, s(z2)) → f76_out1(s(z0))
f41_in(z0, z1) → U7(f45_in(z0, z1), z0, z1)
U7(f45_out1(z0), z1, z2) → U8(f46_in(z0, z1), z1, z2, z0)
U8(f46_out1(z0, z1), z2, z3, z4) → f41_out1(z4, z0, z1)
f46_in(z0, z1) → U9(f65_in(z0, z1), z0, z1)
U9(f65_out1(z0), z1, z2) → U10(f76_in(z0, z2), z1, z2, z0)
U10(f76_out1(z0), z1, z2, z3) → f46_out1(z3, z0)
f58_in(z0, z1) → U11(f45_in(z0, z1), z0, z1)
U11(f45_out1(z0), z1, z2) → U12(f65_in(z0, z1), z1, z2, z0)
U12(f65_out1(z0), z1, z2, z3) → f58_out1(z3, z0)
f18_in(z0) → U13(f20_in(z0), f21_in(z0), z0)
U13(f20_out1(z0), z1, z2) → f18_out1(z0)
U13(z0, f21_out1(z1, z2), z3) → f18_out2(z1, z2)
Tuples:

F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
F18_IN(z0) → c(F20_IN(z0))
F65_IN(z0, s(z1)) → c7(F65_IN(z0, z1))
F20_IN(s(z0)) → c10(F20_IN(z0))
F45_IN(z0, s(z1)) → c13(F58_IN(z0, z1))
F76_IN(z0, s(z1)) → c16(F76_IN(z0, z1))
F1_IN(z0, s(0)) → c
F1_IN(z0, s(s(z1))) → c
U7'(f45_out1(z0), z1, z2) → c
U9'(f65_out1(z0), z1, z2) → c
U11'(f45_out1(z0), z1, z2) → c
F18_IN(z0) → c
S tuples:

F65_IN(z0, s(z1)) → c7(F65_IN(z0, z1))
K tuples:

F1_IN(z0, s(0)) → c(F18_IN(z0))
F1_IN(z0, s(s(z1))) → c(F41_IN(z0, z1))
F41_IN(z0, z1) → c(U7'(f45_in(z0, z1), z0, z1))
F41_IN(z0, z1) → c(F45_IN(z0, z1))
U7'(f45_out1(z0), z1, z2) → c(F46_IN(z0, z1))
F46_IN(z0, z1) → c(U9'(f65_in(z0, z1), z0, z1))
F46_IN(z0, z1) → c(F65_IN(z0, z1))
U9'(f65_out1(z0), z1, z2) → c(F76_IN(z0, z2))
F18_IN(z0) → c(F20_IN(z0))
F1_IN(z0, s(0)) → c
F1_IN(z0, s(s(z1))) → c
U7'(f45_out1(z0), z1, z2) → c
U9'(f65_out1(z0), z1, z2) → c
F18_IN(z0) → c
F58_IN(z0, z1) → c24(U11'(f45_in(z0, z1), z0, z1), F45_IN(z0, z1))
F20_IN(s(z0)) → c10(F20_IN(z0))
F45_IN(z0, s(z1)) → c13(F58_IN(z0, z1))
U11'(f45_out1(z0), z1, z2) → c(F65_IN(z0, z1))
U11'(f45_out1(z0), z1, z2) → c
F76_IN(z0, s(z1)) → c16(F76_IN(z0, z1))
Defined Rule Symbols:

f1_in, U1, U2, f65_in, U3, f20_in, U4, f45_in, U5, f76_in, U6, f41_in, U7, U8, f46_in, U9, U10, f58_in, U11, U12, f18_in, U13

Defined Pair Symbols:

F58_IN, F1_IN, F41_IN, U7', F46_IN, U9', U11', F18_IN, F65_IN, F20_IN, F45_IN, F76_IN

Compound Symbols:

c24, c, c7, c10, c13, c16, c