(0) Obligation:

Clauses:

max(X, Y, X) :- less(Y, X).
max(X, Y, Y) :- less(X, s(Y)).
less(0, s(X1)).
less(s(X), s(Y)) :- less(X, Y).

Query: max(a,a,g)

(1) LPReorderTransformerProof (EQUIVALENT transformation)

Reordered facts before rules in definite LP [PROLOG].

(2) Obligation:

Clauses:

less(0, s(X1)).
max(X, Y, X) :- less(Y, X).
max(X, Y, Y) :- less(X, s(Y)).
less(s(X), s(Y)) :- less(X, Y).

Query: max(a,a,g)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f4_in(z0), z0)
U1(f4_out1(z0, z1), z2) → f2_out1(z0, z1)
U1(f4_out2(z0, z1), z2) → f2_out1(z0, z1)
f12_in(s(z0)) → f12_out1(0)
f12_in(s(z0)) → U2(f12_in(z0), s(z0))
f12_in(s(z0)) → U3(f12_in(z0), s(z0))
U2(f12_out1(z0), s(z1)) → f12_out1(s(z0))
U3(f12_out1(z0), s(z1)) → f12_out1(s(z0))
f5_in(z0) → U4(f12_in(z0), z0)
U4(f12_out1(z0), z1) → f5_out1(z1, z0)
f6_in(z0) → U5(f12_in(s(z0)), z0)
U5(f12_out1(z0), z1) → f6_out1(z0, z1)
f4_in(z0) → U6(f5_in(z0), f6_in(z0), z0)
U6(f5_out1(z0, z1), z2, z3) → f4_out1(z0, z1)
U6(z0, f6_out1(z1, z2), z3) → f4_out2(z1, z2)
Tuples:

F2_IN(z0) → c(U1'(f4_in(z0), z0), F4_IN(z0))
F12_IN(s(z0)) → c4(U2'(f12_in(z0), s(z0)), F12_IN(z0))
F12_IN(s(z0)) → c5(U3'(f12_in(z0), s(z0)), F12_IN(z0))
F5_IN(z0) → c8(U4'(f12_in(z0), z0), F12_IN(z0))
F6_IN(z0) → c10(U5'(f12_in(s(z0)), z0), F12_IN(s(z0)))
F4_IN(z0) → c12(U6'(f5_in(z0), f6_in(z0), z0), F5_IN(z0), F6_IN(z0))
S tuples:

F2_IN(z0) → c(U1'(f4_in(z0), z0), F4_IN(z0))
F12_IN(s(z0)) → c4(U2'(f12_in(z0), s(z0)), F12_IN(z0))
F12_IN(s(z0)) → c5(U3'(f12_in(z0), s(z0)), F12_IN(z0))
F5_IN(z0) → c8(U4'(f12_in(z0), z0), F12_IN(z0))
F6_IN(z0) → c10(U5'(f12_in(s(z0)), z0), F12_IN(s(z0)))
F4_IN(z0) → c12(U6'(f5_in(z0), f6_in(z0), z0), F5_IN(z0), F6_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f12_in, U2, U3, f5_in, U4, f6_in, U5, f4_in, U6

Defined Pair Symbols:

F2_IN, F12_IN, F5_IN, F6_IN, F4_IN

Compound Symbols:

c, c4, c5, c8, c10, c12

(5) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f4_in(z0), z0)
U1(f4_out1(z0, z1), z2) → f2_out1(z0, z1)
U1(f4_out2(z0, z1), z2) → f2_out1(z0, z1)
f12_in(s(z0)) → f12_out1(0)
f12_in(s(z0)) → U2(f12_in(z0), s(z0))
f12_in(s(z0)) → U3(f12_in(z0), s(z0))
U2(f12_out1(z0), s(z1)) → f12_out1(s(z0))
U3(f12_out1(z0), s(z1)) → f12_out1(s(z0))
f5_in(z0) → U4(f12_in(z0), z0)
U4(f12_out1(z0), z1) → f5_out1(z1, z0)
f6_in(z0) → U5(f12_in(s(z0)), z0)
U5(f12_out1(z0), z1) → f6_out1(z0, z1)
f4_in(z0) → U6(f5_in(z0), f6_in(z0), z0)
U6(f5_out1(z0, z1), z2, z3) → f4_out1(z0, z1)
U6(z0, f6_out1(z1, z2), z3) → f4_out2(z1, z2)
Tuples:

F12_IN(s(z0)) → c4(U2'(f12_in(z0), s(z0)), F12_IN(z0))
F12_IN(s(z0)) → c5(U3'(f12_in(z0), s(z0)), F12_IN(z0))
F2_IN(z0) → c1(U1'(f4_in(z0), z0))
F2_IN(z0) → c1(F4_IN(z0))
F5_IN(z0) → c1(U4'(f12_in(z0), z0))
F5_IN(z0) → c1(F12_IN(z0))
F6_IN(z0) → c1(U5'(f12_in(s(z0)), z0))
F6_IN(z0) → c1(F12_IN(s(z0)))
F4_IN(z0) → c1(U6'(f5_in(z0), f6_in(z0), z0))
F4_IN(z0) → c1(F5_IN(z0))
F4_IN(z0) → c1(F6_IN(z0))
S tuples:

F12_IN(s(z0)) → c4(U2'(f12_in(z0), s(z0)), F12_IN(z0))
F12_IN(s(z0)) → c5(U3'(f12_in(z0), s(z0)), F12_IN(z0))
F2_IN(z0) → c1(U1'(f4_in(z0), z0))
F2_IN(z0) → c1(F4_IN(z0))
F5_IN(z0) → c1(U4'(f12_in(z0), z0))
F5_IN(z0) → c1(F12_IN(z0))
F6_IN(z0) → c1(U5'(f12_in(s(z0)), z0))
F6_IN(z0) → c1(F12_IN(s(z0)))
F4_IN(z0) → c1(U6'(f5_in(z0), f6_in(z0), z0))
F4_IN(z0) → c1(F5_IN(z0))
F4_IN(z0) → c1(F6_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f12_in, U2, U3, f5_in, U4, f6_in, U5, f4_in, U6

Defined Pair Symbols:

F12_IN, F2_IN, F5_IN, F6_IN, F4_IN

Compound Symbols:

c4, c5, c1

(7) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 6 trailing tuple parts

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f4_in(z0), z0)
U1(f4_out1(z0, z1), z2) → f2_out1(z0, z1)
U1(f4_out2(z0, z1), z2) → f2_out1(z0, z1)
f12_in(s(z0)) → f12_out1(0)
f12_in(s(z0)) → U2(f12_in(z0), s(z0))
f12_in(s(z0)) → U3(f12_in(z0), s(z0))
U2(f12_out1(z0), s(z1)) → f12_out1(s(z0))
U3(f12_out1(z0), s(z1)) → f12_out1(s(z0))
f5_in(z0) → U4(f12_in(z0), z0)
U4(f12_out1(z0), z1) → f5_out1(z1, z0)
f6_in(z0) → U5(f12_in(s(z0)), z0)
U5(f12_out1(z0), z1) → f6_out1(z0, z1)
f4_in(z0) → U6(f5_in(z0), f6_in(z0), z0)
U6(f5_out1(z0, z1), z2, z3) → f4_out1(z0, z1)
U6(z0, f6_out1(z1, z2), z3) → f4_out2(z1, z2)
Tuples:

F2_IN(z0) → c1(F4_IN(z0))
F5_IN(z0) → c1(F12_IN(z0))
F6_IN(z0) → c1(F12_IN(s(z0)))
F4_IN(z0) → c1(F5_IN(z0))
F4_IN(z0) → c1(F6_IN(z0))
F12_IN(s(z0)) → c4(F12_IN(z0))
F12_IN(s(z0)) → c5(F12_IN(z0))
F2_IN(z0) → c1
F5_IN(z0) → c1
F6_IN(z0) → c1
F4_IN(z0) → c1
S tuples:

F2_IN(z0) → c1(F4_IN(z0))
F5_IN(z0) → c1(F12_IN(z0))
F6_IN(z0) → c1(F12_IN(s(z0)))
F4_IN(z0) → c1(F5_IN(z0))
F4_IN(z0) → c1(F6_IN(z0))
F12_IN(s(z0)) → c4(F12_IN(z0))
F12_IN(s(z0)) → c5(F12_IN(z0))
F2_IN(z0) → c1
F5_IN(z0) → c1
F6_IN(z0) → c1
F4_IN(z0) → c1
K tuples:none
Defined Rule Symbols:

f2_in, U1, f12_in, U2, U3, f5_in, U4, f6_in, U5, f4_in, U6

Defined Pair Symbols:

F2_IN, F5_IN, F6_IN, F4_IN, F12_IN

Compound Symbols:

c1, c4, c5, c1

(9) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F2_IN(z0) → c1(F4_IN(z0))
F4_IN(z0) → c1(F5_IN(z0))
F4_IN(z0) → c1(F6_IN(z0))
F2_IN(z0) → c1
F5_IN(z0) → c1
F6_IN(z0) → c1
F4_IN(z0) → c1
F4_IN(z0) → c1(F5_IN(z0))
F4_IN(z0) → c1(F6_IN(z0))
F4_IN(z0) → c1
F5_IN(z0) → c1(F12_IN(z0))
F5_IN(z0) → c1
F6_IN(z0) → c1(F12_IN(s(z0)))
F6_IN(z0) → c1

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f4_in(z0), z0)
U1(f4_out1(z0, z1), z2) → f2_out1(z0, z1)
U1(f4_out2(z0, z1), z2) → f2_out1(z0, z1)
f12_in(s(z0)) → f12_out1(0)
f12_in(s(z0)) → U2(f12_in(z0), s(z0))
f12_in(s(z0)) → U3(f12_in(z0), s(z0))
U2(f12_out1(z0), s(z1)) → f12_out1(s(z0))
U3(f12_out1(z0), s(z1)) → f12_out1(s(z0))
f5_in(z0) → U4(f12_in(z0), z0)
U4(f12_out1(z0), z1) → f5_out1(z1, z0)
f6_in(z0) → U5(f12_in(s(z0)), z0)
U5(f12_out1(z0), z1) → f6_out1(z0, z1)
f4_in(z0) → U6(f5_in(z0), f6_in(z0), z0)
U6(f5_out1(z0, z1), z2, z3) → f4_out1(z0, z1)
U6(z0, f6_out1(z1, z2), z3) → f4_out2(z1, z2)
Tuples:

F2_IN(z0) → c1(F4_IN(z0))
F5_IN(z0) → c1(F12_IN(z0))
F6_IN(z0) → c1(F12_IN(s(z0)))
F4_IN(z0) → c1(F5_IN(z0))
F4_IN(z0) → c1(F6_IN(z0))
F12_IN(s(z0)) → c4(F12_IN(z0))
F12_IN(s(z0)) → c5(F12_IN(z0))
F2_IN(z0) → c1
F5_IN(z0) → c1
F6_IN(z0) → c1
F4_IN(z0) → c1
S tuples:

F12_IN(s(z0)) → c4(F12_IN(z0))
F12_IN(s(z0)) → c5(F12_IN(z0))
K tuples:

F2_IN(z0) → c1(F4_IN(z0))
F4_IN(z0) → c1(F5_IN(z0))
F4_IN(z0) → c1(F6_IN(z0))
F2_IN(z0) → c1
F5_IN(z0) → c1
F6_IN(z0) → c1
F4_IN(z0) → c1
F5_IN(z0) → c1(F12_IN(z0))
F6_IN(z0) → c1(F12_IN(s(z0)))
Defined Rule Symbols:

f2_in, U1, f12_in, U2, U3, f5_in, U4, f6_in, U5, f4_in, U6

Defined Pair Symbols:

F2_IN, F5_IN, F6_IN, F4_IN, F12_IN

Compound Symbols:

c1, c4, c5, c1

(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F12_IN(s(z0)) → c4(F12_IN(z0))
F12_IN(s(z0)) → c5(F12_IN(z0))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(z0) → c1(F4_IN(z0))
F5_IN(z0) → c1(F12_IN(z0))
F6_IN(z0) → c1(F12_IN(s(z0)))
F4_IN(z0) → c1(F5_IN(z0))
F4_IN(z0) → c1(F6_IN(z0))
F12_IN(s(z0)) → c4(F12_IN(z0))
F12_IN(s(z0)) → c5(F12_IN(z0))
F2_IN(z0) → c1
F5_IN(z0) → c1
F6_IN(z0) → c1
F4_IN(z0) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F12_IN(x1)) = x1   
POL(F2_IN(x1)) = [3] + [3]x1   
POL(F4_IN(x1)) = [3] + [3]x1   
POL(F5_IN(x1)) = [2] + x1   
POL(F6_IN(x1)) = [2] + [2]x1   
POL(c1) = 0   
POL(c1(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(s(x1)) = [2] + x1   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → U1(f4_in(z0), z0)
U1(f4_out1(z0, z1), z2) → f2_out1(z0, z1)
U1(f4_out2(z0, z1), z2) → f2_out1(z0, z1)
f12_in(s(z0)) → f12_out1(0)
f12_in(s(z0)) → U2(f12_in(z0), s(z0))
f12_in(s(z0)) → U3(f12_in(z0), s(z0))
U2(f12_out1(z0), s(z1)) → f12_out1(s(z0))
U3(f12_out1(z0), s(z1)) → f12_out1(s(z0))
f5_in(z0) → U4(f12_in(z0), z0)
U4(f12_out1(z0), z1) → f5_out1(z1, z0)
f6_in(z0) → U5(f12_in(s(z0)), z0)
U5(f12_out1(z0), z1) → f6_out1(z0, z1)
f4_in(z0) → U6(f5_in(z0), f6_in(z0), z0)
U6(f5_out1(z0, z1), z2, z3) → f4_out1(z0, z1)
U6(z0, f6_out1(z1, z2), z3) → f4_out2(z1, z2)
Tuples:

F2_IN(z0) → c1(F4_IN(z0))
F5_IN(z0) → c1(F12_IN(z0))
F6_IN(z0) → c1(F12_IN(s(z0)))
F4_IN(z0) → c1(F5_IN(z0))
F4_IN(z0) → c1(F6_IN(z0))
F12_IN(s(z0)) → c4(F12_IN(z0))
F12_IN(s(z0)) → c5(F12_IN(z0))
F2_IN(z0) → c1
F5_IN(z0) → c1
F6_IN(z0) → c1
F4_IN(z0) → c1
S tuples:none
K tuples:

F2_IN(z0) → c1(F4_IN(z0))
F4_IN(z0) → c1(F5_IN(z0))
F4_IN(z0) → c1(F6_IN(z0))
F2_IN(z0) → c1
F5_IN(z0) → c1
F6_IN(z0) → c1
F4_IN(z0) → c1
F5_IN(z0) → c1(F12_IN(z0))
F6_IN(z0) → c1(F12_IN(s(z0)))
F12_IN(s(z0)) → c4(F12_IN(z0))
F12_IN(s(z0)) → c5(F12_IN(z0))
Defined Rule Symbols:

f2_in, U1, f12_in, U2, U3, f5_in, U4, f6_in, U5, f4_in, U6

Defined Pair Symbols:

F2_IN, F5_IN, F6_IN, F4_IN, F12_IN

Compound Symbols:

c1, c4, c5, c1

(13) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(14) BOUNDS(O(1), O(1))

(15) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(s(z0)) → f1_out1(s(z0), 0)
f1_in(s(z0)) → U1(f13_in(z0), s(z0))
f1_in(z0) → U2(f11_in(z0), z0)
f1_in(z0) → f1_out1(0, z0)
f1_in(z0) → U3(f17_in(z0), z0)
f1_in(z0) → U4(f17_in(z0), z0)
U1(f13_out1(z0), s(z1)) → f1_out1(s(z1), z0)
U1(f13_out3(z0, z1), s(z2)) → f1_out1(z0, z1)
U2(f11_out1(z0), z1) → f1_out1(z1, z0)
U2(f11_out3(z0, z1), z2) → f1_out1(z0, z1)
U3(f17_out1(z0), z1) → f1_out1(s(z0), z1)
U4(f17_out1(z0), z1) → f1_out1(s(z0), z1)
f17_in(s(z0)) → f17_out1(0)
f17_in(s(z0)) → U5(f17_in(z0), s(z0))
f17_in(s(z0)) → U6(f17_in(z0), s(z0))
U5(f17_out1(z0), s(z1)) → f17_out1(s(z0))
U6(f17_out1(z0), s(z1)) → f17_out1(s(z0))
f40_in(s(z0)) → U7(f17_in(z0), s(z0))
U7(f17_out1(z0), s(z1)) → f40_out1(s(z0))
f41_in(z0) → U8(f17_in(s(z0)), z0)
U8(f17_out1(z0), z1) → f41_out2(z0, z1)
f15_in(z0) → U9(f17_in(z0), z0)
U9(f17_out1(z0), z1) → f15_out1(s(z0))
f16_in(z0) → U10(f17_in(s(s(z0))), z0)
U10(f17_out1(z0), z1) → f16_out2(z0, s(z1))
f11_in(z0) → U11(f40_in(z0), f41_in(z0), z0)
U11(f40_out1(z0), z1, z2) → f11_out1(z0)
U11(z0, f41_out2(z1, z2), z3) → f11_out3(z1, z2)
f13_in(z0) → U12(f15_in(z0), f16_in(z0), z0)
U12(f15_out1(z0), z1, z2) → f13_out1(z0)
U12(z0, f16_out2(z1, z2), z3) → f13_out3(z1, z2)
Tuples:

F1_IN(s(z0)) → c1(U1'(f13_in(z0), s(z0)), F13_IN(z0))
F1_IN(z0) → c2(U2'(f11_in(z0), z0), F11_IN(z0))
F1_IN(z0) → c4(U3'(f17_in(z0), z0), F17_IN(z0))
F1_IN(z0) → c5(U4'(f17_in(z0), z0), F17_IN(z0))
F17_IN(s(z0)) → c13(U5'(f17_in(z0), s(z0)), F17_IN(z0))
F17_IN(s(z0)) → c14(U6'(f17_in(z0), s(z0)), F17_IN(z0))
F40_IN(s(z0)) → c17(U7'(f17_in(z0), s(z0)), F17_IN(z0))
F41_IN(z0) → c19(U8'(f17_in(s(z0)), z0), F17_IN(s(z0)))
F15_IN(z0) → c21(U9'(f17_in(z0), z0), F17_IN(z0))
F16_IN(z0) → c23(U10'(f17_in(s(s(z0))), z0), F17_IN(s(s(z0))))
F11_IN(z0) → c25(U11'(f40_in(z0), f41_in(z0), z0), F40_IN(z0), F41_IN(z0))
F13_IN(z0) → c28(U12'(f15_in(z0), f16_in(z0), z0), F15_IN(z0), F16_IN(z0))
S tuples:

F1_IN(s(z0)) → c1(U1'(f13_in(z0), s(z0)), F13_IN(z0))
F1_IN(z0) → c2(U2'(f11_in(z0), z0), F11_IN(z0))
F1_IN(z0) → c4(U3'(f17_in(z0), z0), F17_IN(z0))
F1_IN(z0) → c5(U4'(f17_in(z0), z0), F17_IN(z0))
F17_IN(s(z0)) → c13(U5'(f17_in(z0), s(z0)), F17_IN(z0))
F17_IN(s(z0)) → c14(U6'(f17_in(z0), s(z0)), F17_IN(z0))
F40_IN(s(z0)) → c17(U7'(f17_in(z0), s(z0)), F17_IN(z0))
F41_IN(z0) → c19(U8'(f17_in(s(z0)), z0), F17_IN(s(z0)))
F15_IN(z0) → c21(U9'(f17_in(z0), z0), F17_IN(z0))
F16_IN(z0) → c23(U10'(f17_in(s(s(z0))), z0), F17_IN(s(s(z0))))
F11_IN(z0) → c25(U11'(f40_in(z0), f41_in(z0), z0), F40_IN(z0), F41_IN(z0))
F13_IN(z0) → c28(U12'(f15_in(z0), f16_in(z0), z0), F15_IN(z0), F16_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, U3, U4, f17_in, U5, U6, f40_in, U7, f41_in, U8, f15_in, U9, f16_in, U10, f11_in, U11, f13_in, U12

Defined Pair Symbols:

F1_IN, F17_IN, F40_IN, F41_IN, F15_IN, F16_IN, F11_IN, F13_IN

Compound Symbols:

c1, c2, c4, c5, c13, c14, c17, c19, c21, c23, c25, c28

(17) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(s(z0)) → f1_out1(s(z0), 0)
f1_in(s(z0)) → U1(f13_in(z0), s(z0))
f1_in(z0) → U2(f11_in(z0), z0)
f1_in(z0) → f1_out1(0, z0)
f1_in(z0) → U3(f17_in(z0), z0)
f1_in(z0) → U4(f17_in(z0), z0)
U1(f13_out1(z0), s(z1)) → f1_out1(s(z1), z0)
U1(f13_out3(z0, z1), s(z2)) → f1_out1(z0, z1)
U2(f11_out1(z0), z1) → f1_out1(z1, z0)
U2(f11_out3(z0, z1), z2) → f1_out1(z0, z1)
U3(f17_out1(z0), z1) → f1_out1(s(z0), z1)
U4(f17_out1(z0), z1) → f1_out1(s(z0), z1)
f17_in(s(z0)) → f17_out1(0)
f17_in(s(z0)) → U5(f17_in(z0), s(z0))
f17_in(s(z0)) → U6(f17_in(z0), s(z0))
U5(f17_out1(z0), s(z1)) → f17_out1(s(z0))
U6(f17_out1(z0), s(z1)) → f17_out1(s(z0))
f40_in(s(z0)) → U7(f17_in(z0), s(z0))
U7(f17_out1(z0), s(z1)) → f40_out1(s(z0))
f41_in(z0) → U8(f17_in(s(z0)), z0)
U8(f17_out1(z0), z1) → f41_out2(z0, z1)
f15_in(z0) → U9(f17_in(z0), z0)
U9(f17_out1(z0), z1) → f15_out1(s(z0))
f16_in(z0) → U10(f17_in(s(s(z0))), z0)
U10(f17_out1(z0), z1) → f16_out2(z0, s(z1))
f11_in(z0) → U11(f40_in(z0), f41_in(z0), z0)
U11(f40_out1(z0), z1, z2) → f11_out1(z0)
U11(z0, f41_out2(z1, z2), z3) → f11_out3(z1, z2)
f13_in(z0) → U12(f15_in(z0), f16_in(z0), z0)
U12(f15_out1(z0), z1, z2) → f13_out1(z0)
U12(z0, f16_out2(z1, z2), z3) → f13_out3(z1, z2)
Tuples:

F17_IN(s(z0)) → c13(U5'(f17_in(z0), s(z0)), F17_IN(z0))
F17_IN(s(z0)) → c14(U6'(f17_in(z0), s(z0)), F17_IN(z0))
F1_IN(s(z0)) → c(U1'(f13_in(z0), s(z0)))
F1_IN(s(z0)) → c(F13_IN(z0))
F1_IN(z0) → c(U2'(f11_in(z0), z0))
F1_IN(z0) → c(F11_IN(z0))
F1_IN(z0) → c(U3'(f17_in(z0), z0))
F1_IN(z0) → c(F17_IN(z0))
F1_IN(z0) → c(U4'(f17_in(z0), z0))
F40_IN(s(z0)) → c(U7'(f17_in(z0), s(z0)))
F40_IN(s(z0)) → c(F17_IN(z0))
F41_IN(z0) → c(U8'(f17_in(s(z0)), z0))
F41_IN(z0) → c(F17_IN(s(z0)))
F15_IN(z0) → c(U9'(f17_in(z0), z0))
F15_IN(z0) → c(F17_IN(z0))
F16_IN(z0) → c(U10'(f17_in(s(s(z0))), z0))
F16_IN(z0) → c(F17_IN(s(s(z0))))
F11_IN(z0) → c(U11'(f40_in(z0), f41_in(z0), z0))
F11_IN(z0) → c(F40_IN(z0))
F11_IN(z0) → c(F41_IN(z0))
F13_IN(z0) → c(U12'(f15_in(z0), f16_in(z0), z0))
F13_IN(z0) → c(F15_IN(z0))
F13_IN(z0) → c(F16_IN(z0))
S tuples:

F17_IN(s(z0)) → c13(U5'(f17_in(z0), s(z0)), F17_IN(z0))
F17_IN(s(z0)) → c14(U6'(f17_in(z0), s(z0)), F17_IN(z0))
F1_IN(s(z0)) → c(U1'(f13_in(z0), s(z0)))
F1_IN(s(z0)) → c(F13_IN(z0))
F1_IN(z0) → c(U2'(f11_in(z0), z0))
F1_IN(z0) → c(F11_IN(z0))
F1_IN(z0) → c(U3'(f17_in(z0), z0))
F1_IN(z0) → c(F17_IN(z0))
F1_IN(z0) → c(U4'(f17_in(z0), z0))
F40_IN(s(z0)) → c(U7'(f17_in(z0), s(z0)))
F40_IN(s(z0)) → c(F17_IN(z0))
F41_IN(z0) → c(U8'(f17_in(s(z0)), z0))
F41_IN(z0) → c(F17_IN(s(z0)))
F15_IN(z0) → c(U9'(f17_in(z0), z0))
F15_IN(z0) → c(F17_IN(z0))
F16_IN(z0) → c(U10'(f17_in(s(s(z0))), z0))
F16_IN(z0) → c(F17_IN(s(s(z0))))
F11_IN(z0) → c(U11'(f40_in(z0), f41_in(z0), z0))
F11_IN(z0) → c(F40_IN(z0))
F11_IN(z0) → c(F41_IN(z0))
F13_IN(z0) → c(U12'(f15_in(z0), f16_in(z0), z0))
F13_IN(z0) → c(F15_IN(z0))
F13_IN(z0) → c(F16_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, U3, U4, f17_in, U5, U6, f40_in, U7, f41_in, U8, f15_in, U9, f16_in, U10, f11_in, U11, f13_in, U12

Defined Pair Symbols:

F17_IN, F1_IN, F40_IN, F41_IN, F15_IN, F16_IN, F11_IN, F13_IN

Compound Symbols:

c13, c14, c

(19) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 12 trailing tuple parts

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(s(z0)) → f1_out1(s(z0), 0)
f1_in(s(z0)) → U1(f13_in(z0), s(z0))
f1_in(z0) → U2(f11_in(z0), z0)
f1_in(z0) → f1_out1(0, z0)
f1_in(z0) → U3(f17_in(z0), z0)
f1_in(z0) → U4(f17_in(z0), z0)
U1(f13_out1(z0), s(z1)) → f1_out1(s(z1), z0)
U1(f13_out3(z0, z1), s(z2)) → f1_out1(z0, z1)
U2(f11_out1(z0), z1) → f1_out1(z1, z0)
U2(f11_out3(z0, z1), z2) → f1_out1(z0, z1)
U3(f17_out1(z0), z1) → f1_out1(s(z0), z1)
U4(f17_out1(z0), z1) → f1_out1(s(z0), z1)
f17_in(s(z0)) → f17_out1(0)
f17_in(s(z0)) → U5(f17_in(z0), s(z0))
f17_in(s(z0)) → U6(f17_in(z0), s(z0))
U5(f17_out1(z0), s(z1)) → f17_out1(s(z0))
U6(f17_out1(z0), s(z1)) → f17_out1(s(z0))
f40_in(s(z0)) → U7(f17_in(z0), s(z0))
U7(f17_out1(z0), s(z1)) → f40_out1(s(z0))
f41_in(z0) → U8(f17_in(s(z0)), z0)
U8(f17_out1(z0), z1) → f41_out2(z0, z1)
f15_in(z0) → U9(f17_in(z0), z0)
U9(f17_out1(z0), z1) → f15_out1(s(z0))
f16_in(z0) → U10(f17_in(s(s(z0))), z0)
U10(f17_out1(z0), z1) → f16_out2(z0, s(z1))
f11_in(z0) → U11(f40_in(z0), f41_in(z0), z0)
U11(f40_out1(z0), z1, z2) → f11_out1(z0)
U11(z0, f41_out2(z1, z2), z3) → f11_out3(z1, z2)
f13_in(z0) → U12(f15_in(z0), f16_in(z0), z0)
U12(f15_out1(z0), z1, z2) → f13_out1(z0)
U12(z0, f16_out2(z1, z2), z3) → f13_out3(z1, z2)
Tuples:

F1_IN(s(z0)) → c(F13_IN(z0))
F1_IN(z0) → c(F11_IN(z0))
F1_IN(z0) → c(F17_IN(z0))
F40_IN(s(z0)) → c(F17_IN(z0))
F41_IN(z0) → c(F17_IN(s(z0)))
F15_IN(z0) → c(F17_IN(z0))
F16_IN(z0) → c(F17_IN(s(s(z0))))
F11_IN(z0) → c(F40_IN(z0))
F11_IN(z0) → c(F41_IN(z0))
F13_IN(z0) → c(F15_IN(z0))
F13_IN(z0) → c(F16_IN(z0))
F17_IN(s(z0)) → c13(F17_IN(z0))
F17_IN(s(z0)) → c14(F17_IN(z0))
F1_IN(s(z0)) → c
F1_IN(z0) → c
F40_IN(s(z0)) → c
F41_IN(z0) → c
F15_IN(z0) → c
F16_IN(z0) → c
F11_IN(z0) → c
F13_IN(z0) → c
S tuples:

F1_IN(s(z0)) → c(F13_IN(z0))
F1_IN(z0) → c(F11_IN(z0))
F1_IN(z0) → c(F17_IN(z0))
F40_IN(s(z0)) → c(F17_IN(z0))
F41_IN(z0) → c(F17_IN(s(z0)))
F15_IN(z0) → c(F17_IN(z0))
F16_IN(z0) → c(F17_IN(s(s(z0))))
F11_IN(z0) → c(F40_IN(z0))
F11_IN(z0) → c(F41_IN(z0))
F13_IN(z0) → c(F15_IN(z0))
F13_IN(z0) → c(F16_IN(z0))
F17_IN(s(z0)) → c13(F17_IN(z0))
F17_IN(s(z0)) → c14(F17_IN(z0))
F1_IN(s(z0)) → c
F1_IN(z0) → c
F40_IN(s(z0)) → c
F41_IN(z0) → c
F15_IN(z0) → c
F16_IN(z0) → c
F11_IN(z0) → c
F13_IN(z0) → c
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, U3, U4, f17_in, U5, U6, f40_in, U7, f41_in, U8, f15_in, U9, f16_in, U10, f11_in, U11, f13_in, U12

Defined Pair Symbols:

F1_IN, F40_IN, F41_IN, F15_IN, F16_IN, F11_IN, F13_IN, F17_IN

Compound Symbols:

c, c13, c14, c

(21) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F1_IN(s(z0)) → c(F13_IN(z0))
F1_IN(z0) → c(F11_IN(z0))
F1_IN(z0) → c(F17_IN(z0))
F1_IN(z0) → c(F17_IN(z0))
F11_IN(z0) → c(F40_IN(z0))
F11_IN(z0) → c(F41_IN(z0))
F13_IN(z0) → c(F15_IN(z0))
F13_IN(z0) → c(F16_IN(z0))
F1_IN(s(z0)) → c
F1_IN(z0) → c
F1_IN(z0) → c
F1_IN(z0) → c
F40_IN(s(z0)) → c
F41_IN(z0) → c
F15_IN(z0) → c
F16_IN(z0) → c
F11_IN(z0) → c
F13_IN(z0) → c
F13_IN(z0) → c(F15_IN(z0))
F13_IN(z0) → c(F16_IN(z0))
F13_IN(z0) → c
F11_IN(z0) → c(F40_IN(z0))
F11_IN(z0) → c(F41_IN(z0))
F11_IN(z0) → c
F40_IN(s(z0)) → c(F17_IN(z0))
F40_IN(s(z0)) → c
F41_IN(z0) → c(F17_IN(s(z0)))
F41_IN(z0) → c
F15_IN(z0) → c(F17_IN(z0))
F15_IN(z0) → c
F16_IN(z0) → c(F17_IN(s(s(z0))))
F16_IN(z0) → c

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(s(z0)) → f1_out1(s(z0), 0)
f1_in(s(z0)) → U1(f13_in(z0), s(z0))
f1_in(z0) → U2(f11_in(z0), z0)
f1_in(z0) → f1_out1(0, z0)
f1_in(z0) → U3(f17_in(z0), z0)
f1_in(z0) → U4(f17_in(z0), z0)
U1(f13_out1(z0), s(z1)) → f1_out1(s(z1), z0)
U1(f13_out3(z0, z1), s(z2)) → f1_out1(z0, z1)
U2(f11_out1(z0), z1) → f1_out1(z1, z0)
U2(f11_out3(z0, z1), z2) → f1_out1(z0, z1)
U3(f17_out1(z0), z1) → f1_out1(s(z0), z1)
U4(f17_out1(z0), z1) → f1_out1(s(z0), z1)
f17_in(s(z0)) → f17_out1(0)
f17_in(s(z0)) → U5(f17_in(z0), s(z0))
f17_in(s(z0)) → U6(f17_in(z0), s(z0))
U5(f17_out1(z0), s(z1)) → f17_out1(s(z0))
U6(f17_out1(z0), s(z1)) → f17_out1(s(z0))
f40_in(s(z0)) → U7(f17_in(z0), s(z0))
U7(f17_out1(z0), s(z1)) → f40_out1(s(z0))
f41_in(z0) → U8(f17_in(s(z0)), z0)
U8(f17_out1(z0), z1) → f41_out2(z0, z1)
f15_in(z0) → U9(f17_in(z0), z0)
U9(f17_out1(z0), z1) → f15_out1(s(z0))
f16_in(z0) → U10(f17_in(s(s(z0))), z0)
U10(f17_out1(z0), z1) → f16_out2(z0, s(z1))
f11_in(z0) → U11(f40_in(z0), f41_in(z0), z0)
U11(f40_out1(z0), z1, z2) → f11_out1(z0)
U11(z0, f41_out2(z1, z2), z3) → f11_out3(z1, z2)
f13_in(z0) → U12(f15_in(z0), f16_in(z0), z0)
U12(f15_out1(z0), z1, z2) → f13_out1(z0)
U12(z0, f16_out2(z1, z2), z3) → f13_out3(z1, z2)
Tuples:

F1_IN(s(z0)) → c(F13_IN(z0))
F1_IN(z0) → c(F11_IN(z0))
F1_IN(z0) → c(F17_IN(z0))
F40_IN(s(z0)) → c(F17_IN(z0))
F41_IN(z0) → c(F17_IN(s(z0)))
F15_IN(z0) → c(F17_IN(z0))
F16_IN(z0) → c(F17_IN(s(s(z0))))
F11_IN(z0) → c(F40_IN(z0))
F11_IN(z0) → c(F41_IN(z0))
F13_IN(z0) → c(F15_IN(z0))
F13_IN(z0) → c(F16_IN(z0))
F17_IN(s(z0)) → c13(F17_IN(z0))
F17_IN(s(z0)) → c14(F17_IN(z0))
F1_IN(s(z0)) → c
F1_IN(z0) → c
F40_IN(s(z0)) → c
F41_IN(z0) → c
F15_IN(z0) → c
F16_IN(z0) → c
F11_IN(z0) → c
F13_IN(z0) → c
S tuples:

F17_IN(s(z0)) → c13(F17_IN(z0))
F17_IN(s(z0)) → c14(F17_IN(z0))
K tuples:

F1_IN(s(z0)) → c(F13_IN(z0))
F1_IN(z0) → c(F11_IN(z0))
F1_IN(z0) → c(F17_IN(z0))
F11_IN(z0) → c(F40_IN(z0))
F11_IN(z0) → c(F41_IN(z0))
F13_IN(z0) → c(F15_IN(z0))
F13_IN(z0) → c(F16_IN(z0))
F1_IN(s(z0)) → c
F1_IN(z0) → c
F40_IN(s(z0)) → c
F41_IN(z0) → c
F15_IN(z0) → c
F16_IN(z0) → c
F11_IN(z0) → c
F13_IN(z0) → c
F40_IN(s(z0)) → c(F17_IN(z0))
F41_IN(z0) → c(F17_IN(s(z0)))
F15_IN(z0) → c(F17_IN(z0))
F16_IN(z0) → c(F17_IN(s(s(z0))))
Defined Rule Symbols:

f1_in, U1, U2, U3, U4, f17_in, U5, U6, f40_in, U7, f41_in, U8, f15_in, U9, f16_in, U10, f11_in, U11, f13_in, U12

Defined Pair Symbols:

F1_IN, F40_IN, F41_IN, F15_IN, F16_IN, F11_IN, F13_IN, F17_IN

Compound Symbols:

c, c13, c14, c

(23) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F17_IN(s(z0)) → c13(F17_IN(z0))
F17_IN(s(z0)) → c14(F17_IN(z0))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(s(z0)) → c(F13_IN(z0))
F1_IN(z0) → c(F11_IN(z0))
F1_IN(z0) → c(F17_IN(z0))
F40_IN(s(z0)) → c(F17_IN(z0))
F41_IN(z0) → c(F17_IN(s(z0)))
F15_IN(z0) → c(F17_IN(z0))
F16_IN(z0) → c(F17_IN(s(s(z0))))
F11_IN(z0) → c(F40_IN(z0))
F11_IN(z0) → c(F41_IN(z0))
F13_IN(z0) → c(F15_IN(z0))
F13_IN(z0) → c(F16_IN(z0))
F17_IN(s(z0)) → c13(F17_IN(z0))
F17_IN(s(z0)) → c14(F17_IN(z0))
F1_IN(s(z0)) → c
F1_IN(z0) → c
F40_IN(s(z0)) → c
F41_IN(z0) → c
F15_IN(z0) → c
F16_IN(z0) → c
F11_IN(z0) → c
F13_IN(z0) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F11_IN(x1)) = [3] + [2]x1   
POL(F13_IN(x1)) = [3] + x1   
POL(F15_IN(x1)) = x1   
POL(F16_IN(x1)) = [3] + x1   
POL(F17_IN(x1)) = x1   
POL(F1_IN(x1)) = [3] + [2]x1   
POL(F40_IN(x1)) = [2] + [2]x1   
POL(F41_IN(x1)) = [2] + [2]x1   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c13(x1)) = x1   
POL(c14(x1)) = x1   
POL(s(x1)) = [1] + x1   

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(s(z0)) → f1_out1(s(z0), 0)
f1_in(s(z0)) → U1(f13_in(z0), s(z0))
f1_in(z0) → U2(f11_in(z0), z0)
f1_in(z0) → f1_out1(0, z0)
f1_in(z0) → U3(f17_in(z0), z0)
f1_in(z0) → U4(f17_in(z0), z0)
U1(f13_out1(z0), s(z1)) → f1_out1(s(z1), z0)
U1(f13_out3(z0, z1), s(z2)) → f1_out1(z0, z1)
U2(f11_out1(z0), z1) → f1_out1(z1, z0)
U2(f11_out3(z0, z1), z2) → f1_out1(z0, z1)
U3(f17_out1(z0), z1) → f1_out1(s(z0), z1)
U4(f17_out1(z0), z1) → f1_out1(s(z0), z1)
f17_in(s(z0)) → f17_out1(0)
f17_in(s(z0)) → U5(f17_in(z0), s(z0))
f17_in(s(z0)) → U6(f17_in(z0), s(z0))
U5(f17_out1(z0), s(z1)) → f17_out1(s(z0))
U6(f17_out1(z0), s(z1)) → f17_out1(s(z0))
f40_in(s(z0)) → U7(f17_in(z0), s(z0))
U7(f17_out1(z0), s(z1)) → f40_out1(s(z0))
f41_in(z0) → U8(f17_in(s(z0)), z0)
U8(f17_out1(z0), z1) → f41_out2(z0, z1)
f15_in(z0) → U9(f17_in(z0), z0)
U9(f17_out1(z0), z1) → f15_out1(s(z0))
f16_in(z0) → U10(f17_in(s(s(z0))), z0)
U10(f17_out1(z0), z1) → f16_out2(z0, s(z1))
f11_in(z0) → U11(f40_in(z0), f41_in(z0), z0)
U11(f40_out1(z0), z1, z2) → f11_out1(z0)
U11(z0, f41_out2(z1, z2), z3) → f11_out3(z1, z2)
f13_in(z0) → U12(f15_in(z0), f16_in(z0), z0)
U12(f15_out1(z0), z1, z2) → f13_out1(z0)
U12(z0, f16_out2(z1, z2), z3) → f13_out3(z1, z2)
Tuples:

F1_IN(s(z0)) → c(F13_IN(z0))
F1_IN(z0) → c(F11_IN(z0))
F1_IN(z0) → c(F17_IN(z0))
F40_IN(s(z0)) → c(F17_IN(z0))
F41_IN(z0) → c(F17_IN(s(z0)))
F15_IN(z0) → c(F17_IN(z0))
F16_IN(z0) → c(F17_IN(s(s(z0))))
F11_IN(z0) → c(F40_IN(z0))
F11_IN(z0) → c(F41_IN(z0))
F13_IN(z0) → c(F15_IN(z0))
F13_IN(z0) → c(F16_IN(z0))
F17_IN(s(z0)) → c13(F17_IN(z0))
F17_IN(s(z0)) → c14(F17_IN(z0))
F1_IN(s(z0)) → c
F1_IN(z0) → c
F40_IN(s(z0)) → c
F41_IN(z0) → c
F15_IN(z0) → c
F16_IN(z0) → c
F11_IN(z0) → c
F13_IN(z0) → c
S tuples:none
K tuples:

F1_IN(s(z0)) → c(F13_IN(z0))
F1_IN(z0) → c(F11_IN(z0))
F1_IN(z0) → c(F17_IN(z0))
F11_IN(z0) → c(F40_IN(z0))
F11_IN(z0) → c(F41_IN(z0))
F13_IN(z0) → c(F15_IN(z0))
F13_IN(z0) → c(F16_IN(z0))
F1_IN(s(z0)) → c
F1_IN(z0) → c
F40_IN(s(z0)) → c
F41_IN(z0) → c
F15_IN(z0) → c
F16_IN(z0) → c
F11_IN(z0) → c
F13_IN(z0) → c
F40_IN(s(z0)) → c(F17_IN(z0))
F41_IN(z0) → c(F17_IN(s(z0)))
F15_IN(z0) → c(F17_IN(z0))
F16_IN(z0) → c(F17_IN(s(s(z0))))
F17_IN(s(z0)) → c13(F17_IN(z0))
F17_IN(s(z0)) → c14(F17_IN(z0))
Defined Rule Symbols:

f1_in, U1, U2, U3, U4, f17_in, U5, U6, f40_in, U7, f41_in, U8, f15_in, U9, f16_in, U10, f11_in, U11, f13_in, U12

Defined Pair Symbols:

F1_IN, F40_IN, F41_IN, F15_IN, F16_IN, F11_IN, F13_IN, F17_IN

Compound Symbols:

c, c13, c14, c