(0) Obligation:

Clauses:

fl([], [], 0).
fl(.(E, X), R, s(Z)) :- ','(append(E, Y, R), fl(X, Y, Z)).
append([], X, X).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).

Query: fl(g,a,a)

(1) LPReorderTransformerProof (EQUIVALENT transformation)

Reordered facts before rules in definite LP [PROLOG].

(2) Obligation:

Clauses:

fl([], [], 0).
append([], X, X).
fl(.(E, X), R, s(Z)) :- ','(append(E, Y, R), fl(X, Y, Z)).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).

Query: fl(g,a,a)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([]) → f1_out1(0)
f1_in(.(z0, z1)) → U1(f20_in(z0, z1), .(z0, z1))
U1(f20_out1(z0), .(z1, z2)) → f1_out1(s(z0))
f23_in([]) → f23_out1
f23_in(.(z0, z1)) → U2(f23_in(z1), .(z0, z1))
U2(f23_out1, .(z0, z1)) → f23_out1
f20_in(z0, z1) → U3(f23_in(z0), z0, z1)
U3(f23_out1, z0, z1) → U4(f1_in(z1), z0, z1)
U4(f1_out1(z0), z1, z2) → f20_out1(z0)
Tuples:

F1_IN(.(z0, z1)) → c1(U1'(f20_in(z0, z1), .(z0, z1)), F20_IN(z0, z1))
F23_IN(.(z0, z1)) → c4(U2'(f23_in(z1), .(z0, z1)), F23_IN(z1))
F20_IN(z0, z1) → c6(U3'(f23_in(z0), z0, z1), F23_IN(z0))
U3'(f23_out1, z0, z1) → c7(U4'(f1_in(z1), z0, z1), F1_IN(z1))
S tuples:

F1_IN(.(z0, z1)) → c1(U1'(f20_in(z0, z1), .(z0, z1)), F20_IN(z0, z1))
F23_IN(.(z0, z1)) → c4(U2'(f23_in(z1), .(z0, z1)), F23_IN(z1))
F20_IN(z0, z1) → c6(U3'(f23_in(z0), z0, z1), F23_IN(z0))
U3'(f23_out1, z0, z1) → c7(U4'(f1_in(z1), z0, z1), F1_IN(z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f23_in, U2, f20_in, U3, U4

Defined Pair Symbols:

F1_IN, F23_IN, F20_IN, U3'

Compound Symbols:

c1, c4, c6, c7

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 3 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([]) → f1_out1(0)
f1_in(.(z0, z1)) → U1(f20_in(z0, z1), .(z0, z1))
U1(f20_out1(z0), .(z1, z2)) → f1_out1(s(z0))
f23_in([]) → f23_out1
f23_in(.(z0, z1)) → U2(f23_in(z1), .(z0, z1))
U2(f23_out1, .(z0, z1)) → f23_out1
f20_in(z0, z1) → U3(f23_in(z0), z0, z1)
U3(f23_out1, z0, z1) → U4(f1_in(z1), z0, z1)
U4(f1_out1(z0), z1, z2) → f20_out1(z0)
Tuples:

F20_IN(z0, z1) → c6(U3'(f23_in(z0), z0, z1), F23_IN(z0))
F1_IN(.(z0, z1)) → c1(F20_IN(z0, z1))
F23_IN(.(z0, z1)) → c4(F23_IN(z1))
U3'(f23_out1, z0, z1) → c7(F1_IN(z1))
S tuples:

F20_IN(z0, z1) → c6(U3'(f23_in(z0), z0, z1), F23_IN(z0))
F1_IN(.(z0, z1)) → c1(F20_IN(z0, z1))
F23_IN(.(z0, z1)) → c4(F23_IN(z1))
U3'(f23_out1, z0, z1) → c7(F1_IN(z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f23_in, U2, f20_in, U3, U4

Defined Pair Symbols:

F20_IN, F1_IN, F23_IN, U3'

Compound Symbols:

c6, c1, c4, c7

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F1_IN(.(z0, z1)) → c1(F20_IN(z0, z1))
U3'(f23_out1, z0, z1) → c7(F1_IN(z1))
We considered the (Usable) Rules:

f23_in([]) → f23_out1
f23_in(.(z0, z1)) → U2(f23_in(z1), .(z0, z1))
U2(f23_out1, .(z0, z1)) → f23_out1
And the Tuples:

F20_IN(z0, z1) → c6(U3'(f23_in(z0), z0, z1), F23_IN(z0))
F1_IN(.(z0, z1)) → c1(F20_IN(z0, z1))
F23_IN(.(z0, z1)) → c4(F23_IN(z1))
U3'(f23_out1, z0, z1) → c7(F1_IN(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1] + x1 + x2   
POL(F1_IN(x1)) = [2]x1   
POL(F20_IN(x1, x2)) = [2]x1 + [2]x2   
POL(F23_IN(x1)) = 0   
POL(U2(x1, x2)) = [2]x2   
POL(U3'(x1, x2, x3)) = x1 + [2]x3   
POL([]) = [2]   
POL(c1(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c7(x1)) = x1   
POL(f23_in(x1)) = [2]x1   
POL(f23_out1) = [1]   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([]) → f1_out1(0)
f1_in(.(z0, z1)) → U1(f20_in(z0, z1), .(z0, z1))
U1(f20_out1(z0), .(z1, z2)) → f1_out1(s(z0))
f23_in([]) → f23_out1
f23_in(.(z0, z1)) → U2(f23_in(z1), .(z0, z1))
U2(f23_out1, .(z0, z1)) → f23_out1
f20_in(z0, z1) → U3(f23_in(z0), z0, z1)
U3(f23_out1, z0, z1) → U4(f1_in(z1), z0, z1)
U4(f1_out1(z0), z1, z2) → f20_out1(z0)
Tuples:

F20_IN(z0, z1) → c6(U3'(f23_in(z0), z0, z1), F23_IN(z0))
F1_IN(.(z0, z1)) → c1(F20_IN(z0, z1))
F23_IN(.(z0, z1)) → c4(F23_IN(z1))
U3'(f23_out1, z0, z1) → c7(F1_IN(z1))
S tuples:

F20_IN(z0, z1) → c6(U3'(f23_in(z0), z0, z1), F23_IN(z0))
F23_IN(.(z0, z1)) → c4(F23_IN(z1))
K tuples:

F1_IN(.(z0, z1)) → c1(F20_IN(z0, z1))
U3'(f23_out1, z0, z1) → c7(F1_IN(z1))
Defined Rule Symbols:

f1_in, U1, f23_in, U2, f20_in, U3, U4

Defined Pair Symbols:

F20_IN, F1_IN, F23_IN, U3'

Compound Symbols:

c6, c1, c4, c7

(9) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F20_IN(z0, z1) → c6(U3'(f23_in(z0), z0, z1), F23_IN(z0))
U3'(f23_out1, z0, z1) → c7(F1_IN(z1))

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([]) → f1_out1(0)
f1_in(.(z0, z1)) → U1(f20_in(z0, z1), .(z0, z1))
U1(f20_out1(z0), .(z1, z2)) → f1_out1(s(z0))
f23_in([]) → f23_out1
f23_in(.(z0, z1)) → U2(f23_in(z1), .(z0, z1))
U2(f23_out1, .(z0, z1)) → f23_out1
f20_in(z0, z1) → U3(f23_in(z0), z0, z1)
U3(f23_out1, z0, z1) → U4(f1_in(z1), z0, z1)
U4(f1_out1(z0), z1, z2) → f20_out1(z0)
Tuples:

F20_IN(z0, z1) → c6(U3'(f23_in(z0), z0, z1), F23_IN(z0))
F1_IN(.(z0, z1)) → c1(F20_IN(z0, z1))
F23_IN(.(z0, z1)) → c4(F23_IN(z1))
U3'(f23_out1, z0, z1) → c7(F1_IN(z1))
S tuples:

F23_IN(.(z0, z1)) → c4(F23_IN(z1))
K tuples:

F1_IN(.(z0, z1)) → c1(F20_IN(z0, z1))
U3'(f23_out1, z0, z1) → c7(F1_IN(z1))
F20_IN(z0, z1) → c6(U3'(f23_in(z0), z0, z1), F23_IN(z0))
Defined Rule Symbols:

f1_in, U1, f23_in, U2, f20_in, U3, U4

Defined Pair Symbols:

F20_IN, F1_IN, F23_IN, U3'

Compound Symbols:

c6, c1, c4, c7

(11) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([]) → f2_out1(0)
f2_in(.(z0, z1)) → U1(f11_in(z0, z1), .(z0, z1))
U1(f11_out1(z0), .(z1, z2)) → f2_out1(s(z0))
f11_in([], z0) → U2(f14_in(z0), [], z0)
f11_in(.(z0, z1), z2) → U3(f11_in(z1, z2), .(z0, z1), z2)
U2(f14_out1(z0), [], z1) → f11_out1(z0)
U2(f14_out2(z0), [], z1) → f11_out1(z0)
U3(f11_out1(z0), .(z1, z2), z3) → f11_out1(z0)
f14_in(z0) → U4(f2_in(z0), f19_in(z0), z0)
U4(f2_out1(z0), z1, z2) → f14_out1(z0)
U4(z0, f19_out1(z1), z2) → f14_out2(z1)
Tuples:

F2_IN(.(z0, z1)) → c1(U1'(f11_in(z0, z1), .(z0, z1)), F11_IN(z0, z1))
F11_IN([], z0) → c3(U2'(f14_in(z0), [], z0), F14_IN(z0))
F11_IN(.(z0, z1), z2) → c4(U3'(f11_in(z1, z2), .(z0, z1), z2), F11_IN(z1, z2))
F14_IN(z0) → c8(U4'(f2_in(z0), f19_in(z0), z0), F2_IN(z0))
S tuples:

F2_IN(.(z0, z1)) → c1(U1'(f11_in(z0, z1), .(z0, z1)), F11_IN(z0, z1))
F11_IN([], z0) → c3(U2'(f14_in(z0), [], z0), F14_IN(z0))
F11_IN(.(z0, z1), z2) → c4(U3'(f11_in(z1, z2), .(z0, z1), z2), F11_IN(z1, z2))
F14_IN(z0) → c8(U4'(f2_in(z0), f19_in(z0), z0), F2_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f11_in, U2, U3, f14_in, U4

Defined Pair Symbols:

F2_IN, F11_IN, F14_IN

Compound Symbols:

c1, c3, c4, c8

(13) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([]) → f2_out1(0)
f2_in(.(z0, z1)) → U1(f11_in(z0, z1), .(z0, z1))
U1(f11_out1(z0), .(z1, z2)) → f2_out1(s(z0))
f11_in([], z0) → U2(f14_in(z0), [], z0)
f11_in(.(z0, z1), z2) → U3(f11_in(z1, z2), .(z0, z1), z2)
U2(f14_out1(z0), [], z1) → f11_out1(z0)
U2(f14_out2(z0), [], z1) → f11_out1(z0)
U3(f11_out1(z0), .(z1, z2), z3) → f11_out1(z0)
f14_in(z0) → U4(f2_in(z0), f19_in(z0), z0)
U4(f2_out1(z0), z1, z2) → f14_out1(z0)
U4(z0, f19_out1(z1), z2) → f14_out2(z1)
Tuples:

F2_IN(.(z0, z1)) → c1(F11_IN(z0, z1))
F11_IN([], z0) → c3(F14_IN(z0))
F11_IN(.(z0, z1), z2) → c4(F11_IN(z1, z2))
F14_IN(z0) → c8(F2_IN(z0))
S tuples:

F2_IN(.(z0, z1)) → c1(F11_IN(z0, z1))
F11_IN([], z0) → c3(F14_IN(z0))
F11_IN(.(z0, z1), z2) → c4(F11_IN(z1, z2))
F14_IN(z0) → c8(F2_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f11_in, U2, U3, f14_in, U4

Defined Pair Symbols:

F2_IN, F11_IN, F14_IN

Compound Symbols:

c1, c3, c4, c8

(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(.(z0, z1)) → c1(F11_IN(z0, z1))
F11_IN([], z0) → c3(F14_IN(z0))
F11_IN(.(z0, z1), z2) → c4(F11_IN(z1, z2))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(.(z0, z1)) → c1(F11_IN(z0, z1))
F11_IN([], z0) → c3(F14_IN(z0))
F11_IN(.(z0, z1), z2) → c4(F11_IN(z1, z2))
F14_IN(z0) → c8(F2_IN(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [2] + x1 + x2   
POL(F11_IN(x1, x2)) = [1] + x1 + x2   
POL(F14_IN(x1)) = x1   
POL(F2_IN(x1)) = x1   
POL([]) = [1]   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c8(x1)) = x1   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([]) → f2_out1(0)
f2_in(.(z0, z1)) → U1(f11_in(z0, z1), .(z0, z1))
U1(f11_out1(z0), .(z1, z2)) → f2_out1(s(z0))
f11_in([], z0) → U2(f14_in(z0), [], z0)
f11_in(.(z0, z1), z2) → U3(f11_in(z1, z2), .(z0, z1), z2)
U2(f14_out1(z0), [], z1) → f11_out1(z0)
U2(f14_out2(z0), [], z1) → f11_out1(z0)
U3(f11_out1(z0), .(z1, z2), z3) → f11_out1(z0)
f14_in(z0) → U4(f2_in(z0), f19_in(z0), z0)
U4(f2_out1(z0), z1, z2) → f14_out1(z0)
U4(z0, f19_out1(z1), z2) → f14_out2(z1)
Tuples:

F2_IN(.(z0, z1)) → c1(F11_IN(z0, z1))
F11_IN([], z0) → c3(F14_IN(z0))
F11_IN(.(z0, z1), z2) → c4(F11_IN(z1, z2))
F14_IN(z0) → c8(F2_IN(z0))
S tuples:

F14_IN(z0) → c8(F2_IN(z0))
K tuples:

F2_IN(.(z0, z1)) → c1(F11_IN(z0, z1))
F11_IN([], z0) → c3(F14_IN(z0))
F11_IN(.(z0, z1), z2) → c4(F11_IN(z1, z2))
Defined Rule Symbols:

f2_in, U1, f11_in, U2, U3, f14_in, U4

Defined Pair Symbols:

F2_IN, F11_IN, F14_IN

Compound Symbols:

c1, c3, c4, c8

(17) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F14_IN(z0) → c8(F2_IN(z0))
F2_IN(.(z0, z1)) → c1(F11_IN(z0, z1))
Now S is empty

(18) BOUNDS(O(1), O(1))