(0) Obligation:

Clauses:

fl([], [], 0).
fl(.(E, X), R, s(Z)) :- ','(append(E, Y, R), fl(X, Y, Z)).
append([], X, X).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).

Query: fl(g,a,g)

(1) LPReorderTransformerProof (EQUIVALENT transformation)

Reordered facts before rules in definite LP [PROLOG].

(2) Obligation:

Clauses:

fl([], [], 0).
append([], X, X).
fl(.(E, X), R, s(Z)) :- ','(append(E, Y, R), fl(X, Y, Z)).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).

Query: fl(g,a,g)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([], 0) → f2_out1
f2_in(.(z0, z1), s(z2)) → U1(f13_in(z0, z1, z2), .(z0, z1), s(z2))
U1(f13_out1, .(z0, z1), s(z2)) → f2_out1
f22_in([]) → f22_out1
f22_in(.(z0, z1)) → U2(f22_in(z1), .(z0, z1))
U2(f22_out1, .(z0, z1)) → f22_out1
f13_in(z0, z1, z2) → U3(f22_in(z0), z0, z1, z2)
U3(f22_out1, z0, z1, z2) → U4(f2_in(z1, z2), z0, z1, z2)
U4(f2_out1, z0, z1, z2) → f13_out1
Tuples:

F2_IN(.(z0, z1), s(z2)) → c1(U1'(f13_in(z0, z1, z2), .(z0, z1), s(z2)), F13_IN(z0, z1, z2))
F22_IN(.(z0, z1)) → c4(U2'(f22_in(z1), .(z0, z1)), F22_IN(z1))
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0), z0, z1, z2), F22_IN(z0))
U3'(f22_out1, z0, z1, z2) → c7(U4'(f2_in(z1, z2), z0, z1, z2), F2_IN(z1, z2))
S tuples:

F2_IN(.(z0, z1), s(z2)) → c1(U1'(f13_in(z0, z1, z2), .(z0, z1), s(z2)), F13_IN(z0, z1, z2))
F22_IN(.(z0, z1)) → c4(U2'(f22_in(z1), .(z0, z1)), F22_IN(z1))
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0), z0, z1, z2), F22_IN(z0))
U3'(f22_out1, z0, z1, z2) → c7(U4'(f2_in(z1, z2), z0, z1, z2), F2_IN(z1, z2))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f22_in, U2, f13_in, U3, U4

Defined Pair Symbols:

F2_IN, F22_IN, F13_IN, U3'

Compound Symbols:

c1, c4, c6, c7

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 3 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([], 0) → f2_out1
f2_in(.(z0, z1), s(z2)) → U1(f13_in(z0, z1, z2), .(z0, z1), s(z2))
U1(f13_out1, .(z0, z1), s(z2)) → f2_out1
f22_in([]) → f22_out1
f22_in(.(z0, z1)) → U2(f22_in(z1), .(z0, z1))
U2(f22_out1, .(z0, z1)) → f22_out1
f13_in(z0, z1, z2) → U3(f22_in(z0), z0, z1, z2)
U3(f22_out1, z0, z1, z2) → U4(f2_in(z1, z2), z0, z1, z2)
U4(f2_out1, z0, z1, z2) → f13_out1
Tuples:

F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0), z0, z1, z2), F22_IN(z0))
F2_IN(.(z0, z1), s(z2)) → c1(F13_IN(z0, z1, z2))
F22_IN(.(z0, z1)) → c4(F22_IN(z1))
U3'(f22_out1, z0, z1, z2) → c7(F2_IN(z1, z2))
S tuples:

F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0), z0, z1, z2), F22_IN(z0))
F2_IN(.(z0, z1), s(z2)) → c1(F13_IN(z0, z1, z2))
F22_IN(.(z0, z1)) → c4(F22_IN(z1))
U3'(f22_out1, z0, z1, z2) → c7(F2_IN(z1, z2))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f22_in, U2, f13_in, U3, U4

Defined Pair Symbols:

F13_IN, F2_IN, F22_IN, U3'

Compound Symbols:

c6, c1, c4, c7

(7) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([], 0) → f1_out1
f1_in(.(z0, z1), s(z2)) → U1(f14_in(z0, z1, z2), .(z0, z1), s(z2))
U1(f14_out1, .(z0, z1), s(z2)) → f1_out1
f14_in([], z0, z1) → U2(f18_in(z0, z1), [], z0, z1)
f14_in(.(z0, z1), z2, z3) → U3(f14_in(z1, z2, z3), .(z0, z1), z2, z3)
U2(f18_out1, [], z0, z1) → f14_out1
U2(f18_out2, [], z0, z1) → f14_out1
U3(f14_out1, .(z0, z1), z2, z3) → f14_out1
f18_in(z0, z1) → U4(f1_in(z0, z1), f21_in(z0, z1), z0, z1)
U4(f1_out1, z0, z1, z2) → f18_out1
U4(z0, f21_out1, z1, z2) → f18_out2
Tuples:

F1_IN(.(z0, z1), s(z2)) → c1(U1'(f14_in(z0, z1, z2), .(z0, z1), s(z2)), F14_IN(z0, z1, z2))
F14_IN([], z0, z1) → c3(U2'(f18_in(z0, z1), [], z0, z1), F18_IN(z0, z1))
F14_IN(.(z0, z1), z2, z3) → c4(U3'(f14_in(z1, z2, z3), .(z0, z1), z2, z3), F14_IN(z1, z2, z3))
F18_IN(z0, z1) → c8(U4'(f1_in(z0, z1), f21_in(z0, z1), z0, z1), F1_IN(z0, z1))
S tuples:

F1_IN(.(z0, z1), s(z2)) → c1(U1'(f14_in(z0, z1, z2), .(z0, z1), s(z2)), F14_IN(z0, z1, z2))
F14_IN([], z0, z1) → c3(U2'(f18_in(z0, z1), [], z0, z1), F18_IN(z0, z1))
F14_IN(.(z0, z1), z2, z3) → c4(U3'(f14_in(z1, z2, z3), .(z0, z1), z2, z3), F14_IN(z1, z2, z3))
F18_IN(z0, z1) → c8(U4'(f1_in(z0, z1), f21_in(z0, z1), z0, z1), F1_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f14_in, U2, U3, f18_in, U4

Defined Pair Symbols:

F1_IN, F14_IN, F18_IN

Compound Symbols:

c1, c3, c4, c8

(9) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([], 0) → f1_out1
f1_in(.(z0, z1), s(z2)) → U1(f14_in(z0, z1, z2), .(z0, z1), s(z2))
U1(f14_out1, .(z0, z1), s(z2)) → f1_out1
f14_in([], z0, z1) → U2(f18_in(z0, z1), [], z0, z1)
f14_in(.(z0, z1), z2, z3) → U3(f14_in(z1, z2, z3), .(z0, z1), z2, z3)
U2(f18_out1, [], z0, z1) → f14_out1
U2(f18_out2, [], z0, z1) → f14_out1
U3(f14_out1, .(z0, z1), z2, z3) → f14_out1
f18_in(z0, z1) → U4(f1_in(z0, z1), f21_in(z0, z1), z0, z1)
U4(f1_out1, z0, z1, z2) → f18_out1
U4(z0, f21_out1, z1, z2) → f18_out2
Tuples:

F1_IN(.(z0, z1), s(z2)) → c1(F14_IN(z0, z1, z2))
F14_IN([], z0, z1) → c3(F18_IN(z0, z1))
F14_IN(.(z0, z1), z2, z3) → c4(F14_IN(z1, z2, z3))
F18_IN(z0, z1) → c8(F1_IN(z0, z1))
S tuples:

F1_IN(.(z0, z1), s(z2)) → c1(F14_IN(z0, z1, z2))
F14_IN([], z0, z1) → c3(F18_IN(z0, z1))
F14_IN(.(z0, z1), z2, z3) → c4(F14_IN(z1, z2, z3))
F18_IN(z0, z1) → c8(F1_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f14_in, U2, U3, f18_in, U4

Defined Pair Symbols:

F1_IN, F14_IN, F18_IN

Compound Symbols:

c1, c3, c4, c8

(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F1_IN(.(z0, z1), s(z2)) → c1(F14_IN(z0, z1, z2))
F14_IN([], z0, z1) → c3(F18_IN(z0, z1))
F14_IN(.(z0, z1), z2, z3) → c4(F14_IN(z1, z2, z3))
F18_IN(z0, z1) → c8(F1_IN(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(.(z0, z1), s(z2)) → c1(F14_IN(z0, z1, z2))
F14_IN([], z0, z1) → c3(F18_IN(z0, z1))
F14_IN(.(z0, z1), z2, z3) → c4(F14_IN(z1, z2, z3))
F18_IN(z0, z1) → c8(F1_IN(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [3] + x1 + x2   
POL(F14_IN(x1, x2, x3)) = [1] + x1 + [2]x2   
POL(F18_IN(x1, x2)) = [2] + [2]x1   
POL(F1_IN(x1, x2)) = [1] + [2]x1   
POL([]) = [2]   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c8(x1)) = x1   
POL(s(x1)) = 0   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([], 0) → f1_out1
f1_in(.(z0, z1), s(z2)) → U1(f14_in(z0, z1, z2), .(z0, z1), s(z2))
U1(f14_out1, .(z0, z1), s(z2)) → f1_out1
f14_in([], z0, z1) → U2(f18_in(z0, z1), [], z0, z1)
f14_in(.(z0, z1), z2, z3) → U3(f14_in(z1, z2, z3), .(z0, z1), z2, z3)
U2(f18_out1, [], z0, z1) → f14_out1
U2(f18_out2, [], z0, z1) → f14_out1
U3(f14_out1, .(z0, z1), z2, z3) → f14_out1
f18_in(z0, z1) → U4(f1_in(z0, z1), f21_in(z0, z1), z0, z1)
U4(f1_out1, z0, z1, z2) → f18_out1
U4(z0, f21_out1, z1, z2) → f18_out2
Tuples:

F1_IN(.(z0, z1), s(z2)) → c1(F14_IN(z0, z1, z2))
F14_IN([], z0, z1) → c3(F18_IN(z0, z1))
F14_IN(.(z0, z1), z2, z3) → c4(F14_IN(z1, z2, z3))
F18_IN(z0, z1) → c8(F1_IN(z0, z1))
S tuples:none
K tuples:

F1_IN(.(z0, z1), s(z2)) → c1(F14_IN(z0, z1, z2))
F14_IN([], z0, z1) → c3(F18_IN(z0, z1))
F14_IN(.(z0, z1), z2, z3) → c4(F14_IN(z1, z2, z3))
F18_IN(z0, z1) → c8(F1_IN(z0, z1))
Defined Rule Symbols:

f1_in, U1, f14_in, U2, U3, f18_in, U4

Defined Pair Symbols:

F1_IN, F14_IN, F18_IN

Compound Symbols:

c1, c3, c4, c8

(13) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(14) BOUNDS(O(1), O(1))