(0) Obligation:

Clauses:

fl([], [], 0).
fl(.(E, X), R, s(Z)) :- ','(append(E, Y, R), fl(X, Y, Z)).
append([], X, X).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).

Query: fl(g,g,a)

(1) LPReorderTransformerProof (EQUIVALENT transformation)

Reordered facts before rules in definite LP [PROLOG].

(2) Obligation:

Clauses:

fl([], [], 0).
append([], X, X).
fl(.(E, X), R, s(Z)) :- ','(append(E, Y, R), fl(X, Y, Z)).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).

Query: fl(g,g,a)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([], []) → f2_out1(0)
f2_in(.(z0, z1), z2) → U1(f18_in(z0, z2, z1), .(z0, z1), z2)
U1(f18_out1(z0, z1), .(z2, z3), z4) → f2_out1(s(z1))
f22_in([], z0) → f22_out1(z0)
f22_in(.(z0, z1), .(z0, z2)) → U2(f22_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f22_out1(z0), .(z1, z2), .(z1, z3)) → f22_out1(z0)
f18_in(z0, z1, z2) → U3(f22_in(z0, z1), z0, z1, z2)
U3(f22_out1(z0), z1, z2, z3) → U4(f2_in(z3, z0), z1, z2, z3, z0)
U4(f2_out1(z0), z1, z2, z3, z4) → f18_out1(z4, z0)
Tuples:

F2_IN(.(z0, z1), z2) → c1(U1'(f18_in(z0, z2, z1), .(z0, z1), z2), F18_IN(z0, z2, z1))
F22_IN(.(z0, z1), .(z0, z2)) → c4(U2'(f22_in(z1, z2), .(z0, z1), .(z0, z2)), F22_IN(z1, z2))
F18_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
U3'(f22_out1(z0), z1, z2, z3) → c7(U4'(f2_in(z3, z0), z1, z2, z3, z0), F2_IN(z3, z0))
S tuples:

F2_IN(.(z0, z1), z2) → c1(U1'(f18_in(z0, z2, z1), .(z0, z1), z2), F18_IN(z0, z2, z1))
F22_IN(.(z0, z1), .(z0, z2)) → c4(U2'(f22_in(z1, z2), .(z0, z1), .(z0, z2)), F22_IN(z1, z2))
F18_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
U3'(f22_out1(z0), z1, z2, z3) → c7(U4'(f2_in(z3, z0), z1, z2, z3, z0), F2_IN(z3, z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f22_in, U2, f18_in, U3, U4

Defined Pair Symbols:

F2_IN, F22_IN, F18_IN, U3'

Compound Symbols:

c1, c4, c6, c7

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 3 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([], []) → f2_out1(0)
f2_in(.(z0, z1), z2) → U1(f18_in(z0, z2, z1), .(z0, z1), z2)
U1(f18_out1(z0, z1), .(z2, z3), z4) → f2_out1(s(z1))
f22_in([], z0) → f22_out1(z0)
f22_in(.(z0, z1), .(z0, z2)) → U2(f22_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f22_out1(z0), .(z1, z2), .(z1, z3)) → f22_out1(z0)
f18_in(z0, z1, z2) → U3(f22_in(z0, z1), z0, z1, z2)
U3(f22_out1(z0), z1, z2, z3) → U4(f2_in(z3, z0), z1, z2, z3, z0)
U4(f2_out1(z0), z1, z2, z3, z4) → f18_out1(z4, z0)
Tuples:

F18_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F2_IN(.(z0, z1), z2) → c1(F18_IN(z0, z2, z1))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F2_IN(z3, z0))
S tuples:

F18_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F2_IN(.(z0, z1), z2) → c1(F18_IN(z0, z2, z1))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F2_IN(z3, z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f22_in, U2, f18_in, U3, U4

Defined Pair Symbols:

F18_IN, F2_IN, F22_IN, U3'

Compound Symbols:

c6, c1, c4, c7

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(.(z0, z1), z2) → c1(F18_IN(z0, z2, z1))
We considered the (Usable) Rules:

f22_in([], z0) → f22_out1(z0)
f22_in(.(z0, z1), .(z0, z2)) → U2(f22_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f22_out1(z0), .(z1, z2), .(z1, z3)) → f22_out1(z0)
And the Tuples:

F18_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F2_IN(.(z0, z1), z2) → c1(F18_IN(z0, z2, z1))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F2_IN(z3, z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [2] + x2   
POL(F18_IN(x1, x2, x3)) = [2]x3   
POL(F22_IN(x1, x2)) = 0   
POL(F2_IN(x1, x2)) = [2]x1   
POL(U2(x1, x2, x3)) = 0   
POL(U3'(x1, x2, x3, x4)) = [2]x4   
POL([]) = 0   
POL(c1(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c7(x1)) = x1   
POL(f22_in(x1, x2)) = 0   
POL(f22_out1(x1)) = 0   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([], []) → f2_out1(0)
f2_in(.(z0, z1), z2) → U1(f18_in(z0, z2, z1), .(z0, z1), z2)
U1(f18_out1(z0, z1), .(z2, z3), z4) → f2_out1(s(z1))
f22_in([], z0) → f22_out1(z0)
f22_in(.(z0, z1), .(z0, z2)) → U2(f22_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f22_out1(z0), .(z1, z2), .(z1, z3)) → f22_out1(z0)
f18_in(z0, z1, z2) → U3(f22_in(z0, z1), z0, z1, z2)
U3(f22_out1(z0), z1, z2, z3) → U4(f2_in(z3, z0), z1, z2, z3, z0)
U4(f2_out1(z0), z1, z2, z3, z4) → f18_out1(z4, z0)
Tuples:

F18_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F2_IN(.(z0, z1), z2) → c1(F18_IN(z0, z2, z1))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F2_IN(z3, z0))
S tuples:

F18_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F2_IN(z3, z0))
K tuples:

F2_IN(.(z0, z1), z2) → c1(F18_IN(z0, z2, z1))
Defined Rule Symbols:

f2_in, U1, f22_in, U2, f18_in, U3, U4

Defined Pair Symbols:

F18_IN, F2_IN, F22_IN, U3'

Compound Symbols:

c6, c1, c4, c7

(9) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F18_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
U3'(f22_out1(z0), z1, z2, z3) → c7(F2_IN(z3, z0))
U3'(f22_out1(z0), z1, z2, z3) → c7(F2_IN(z3, z0))
F2_IN(.(z0, z1), z2) → c1(F18_IN(z0, z2, z1))

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([], []) → f2_out1(0)
f2_in(.(z0, z1), z2) → U1(f18_in(z0, z2, z1), .(z0, z1), z2)
U1(f18_out1(z0, z1), .(z2, z3), z4) → f2_out1(s(z1))
f22_in([], z0) → f22_out1(z0)
f22_in(.(z0, z1), .(z0, z2)) → U2(f22_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f22_out1(z0), .(z1, z2), .(z1, z3)) → f22_out1(z0)
f18_in(z0, z1, z2) → U3(f22_in(z0, z1), z0, z1, z2)
U3(f22_out1(z0), z1, z2, z3) → U4(f2_in(z3, z0), z1, z2, z3, z0)
U4(f2_out1(z0), z1, z2, z3, z4) → f18_out1(z4, z0)
Tuples:

F18_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F2_IN(.(z0, z1), z2) → c1(F18_IN(z0, z2, z1))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F2_IN(z3, z0))
S tuples:

F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
K tuples:

F2_IN(.(z0, z1), z2) → c1(F18_IN(z0, z2, z1))
F18_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
U3'(f22_out1(z0), z1, z2, z3) → c7(F2_IN(z3, z0))
Defined Rule Symbols:

f2_in, U1, f22_in, U2, f18_in, U3, U4

Defined Pair Symbols:

F18_IN, F2_IN, F22_IN, U3'

Compound Symbols:

c6, c1, c4, c7

(11) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([], []) → f1_out1(0)
f1_in(.(z0, z1), z2) → U1(f11_in(z0, z2, z1), .(z0, z1), z2)
U1(f11_out1(z0, z1), .(z2, z3), z4) → f1_out1(s(z1))
f11_in([], z0, z1) → U2(f16_in(z1, z0), [], z0, z1)
f11_in(.(z0, z1), .(z0, z2), z3) → U3(f11_in(z1, z2, z3), .(z0, z1), .(z0, z2), z3)
U2(f16_out1(z0), [], z1, z2) → f11_out1(z1, z0)
U2(f16_out2(z0, z1), [], z2, z3) → f11_out1(z0, z1)
U3(f11_out1(z0, z1), .(z2, z3), .(z2, z4), z5) → f11_out1(z0, z1)
f16_in(z0, z1) → U4(f1_in(z0, z1), f21_in(z1, z0), z0, z1)
U4(f1_out1(z0), z1, z2, z3) → f16_out1(z0)
U4(z0, f21_out1(z1, z2), z3, z4) → f16_out2(z1, z2)
Tuples:

F1_IN(.(z0, z1), z2) → c1(U1'(f11_in(z0, z2, z1), .(z0, z1), z2), F11_IN(z0, z2, z1))
F11_IN([], z0, z1) → c3(U2'(f16_in(z1, z0), [], z0, z1), F16_IN(z1, z0))
F11_IN(.(z0, z1), .(z0, z2), z3) → c4(U3'(f11_in(z1, z2, z3), .(z0, z1), .(z0, z2), z3), F11_IN(z1, z2, z3))
F16_IN(z0, z1) → c8(U4'(f1_in(z0, z1), f21_in(z1, z0), z0, z1), F1_IN(z0, z1))
S tuples:

F1_IN(.(z0, z1), z2) → c1(U1'(f11_in(z0, z2, z1), .(z0, z1), z2), F11_IN(z0, z2, z1))
F11_IN([], z0, z1) → c3(U2'(f16_in(z1, z0), [], z0, z1), F16_IN(z1, z0))
F11_IN(.(z0, z1), .(z0, z2), z3) → c4(U3'(f11_in(z1, z2, z3), .(z0, z1), .(z0, z2), z3), F11_IN(z1, z2, z3))
F16_IN(z0, z1) → c8(U4'(f1_in(z0, z1), f21_in(z1, z0), z0, z1), F1_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f11_in, U2, U3, f16_in, U4

Defined Pair Symbols:

F1_IN, F11_IN, F16_IN

Compound Symbols:

c1, c3, c4, c8

(13) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([], []) → f1_out1(0)
f1_in(.(z0, z1), z2) → U1(f11_in(z0, z2, z1), .(z0, z1), z2)
U1(f11_out1(z0, z1), .(z2, z3), z4) → f1_out1(s(z1))
f11_in([], z0, z1) → U2(f16_in(z1, z0), [], z0, z1)
f11_in(.(z0, z1), .(z0, z2), z3) → U3(f11_in(z1, z2, z3), .(z0, z1), .(z0, z2), z3)
U2(f16_out1(z0), [], z1, z2) → f11_out1(z1, z0)
U2(f16_out2(z0, z1), [], z2, z3) → f11_out1(z0, z1)
U3(f11_out1(z0, z1), .(z2, z3), .(z2, z4), z5) → f11_out1(z0, z1)
f16_in(z0, z1) → U4(f1_in(z0, z1), f21_in(z1, z0), z0, z1)
U4(f1_out1(z0), z1, z2, z3) → f16_out1(z0)
U4(z0, f21_out1(z1, z2), z3, z4) → f16_out2(z1, z2)
Tuples:

F1_IN(.(z0, z1), z2) → c1(F11_IN(z0, z2, z1))
F11_IN([], z0, z1) → c3(F16_IN(z1, z0))
F11_IN(.(z0, z1), .(z0, z2), z3) → c4(F11_IN(z1, z2, z3))
F16_IN(z0, z1) → c8(F1_IN(z0, z1))
S tuples:

F1_IN(.(z0, z1), z2) → c1(F11_IN(z0, z2, z1))
F11_IN([], z0, z1) → c3(F16_IN(z1, z0))
F11_IN(.(z0, z1), .(z0, z2), z3) → c4(F11_IN(z1, z2, z3))
F16_IN(z0, z1) → c8(F1_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f11_in, U2, U3, f16_in, U4

Defined Pair Symbols:

F1_IN, F11_IN, F16_IN

Compound Symbols:

c1, c3, c4, c8

(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F11_IN(.(z0, z1), .(z0, z2), z3) → c4(F11_IN(z1, z2, z3))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(.(z0, z1), z2) → c1(F11_IN(z0, z2, z1))
F11_IN([], z0, z1) → c3(F16_IN(z1, z0))
F11_IN(.(z0, z1), .(z0, z2), z3) → c4(F11_IN(z1, z2, z3))
F16_IN(z0, z1) → c8(F1_IN(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1] + x2   
POL(F11_IN(x1, x2, x3)) = [2]x2   
POL(F16_IN(x1, x2)) = [2]x2   
POL(F1_IN(x1, x2)) = [2]x2   
POL([]) = 0   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c8(x1)) = x1   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([], []) → f1_out1(0)
f1_in(.(z0, z1), z2) → U1(f11_in(z0, z2, z1), .(z0, z1), z2)
U1(f11_out1(z0, z1), .(z2, z3), z4) → f1_out1(s(z1))
f11_in([], z0, z1) → U2(f16_in(z1, z0), [], z0, z1)
f11_in(.(z0, z1), .(z0, z2), z3) → U3(f11_in(z1, z2, z3), .(z0, z1), .(z0, z2), z3)
U2(f16_out1(z0), [], z1, z2) → f11_out1(z1, z0)
U2(f16_out2(z0, z1), [], z2, z3) → f11_out1(z0, z1)
U3(f11_out1(z0, z1), .(z2, z3), .(z2, z4), z5) → f11_out1(z0, z1)
f16_in(z0, z1) → U4(f1_in(z0, z1), f21_in(z1, z0), z0, z1)
U4(f1_out1(z0), z1, z2, z3) → f16_out1(z0)
U4(z0, f21_out1(z1, z2), z3, z4) → f16_out2(z1, z2)
Tuples:

F1_IN(.(z0, z1), z2) → c1(F11_IN(z0, z2, z1))
F11_IN([], z0, z1) → c3(F16_IN(z1, z0))
F11_IN(.(z0, z1), .(z0, z2), z3) → c4(F11_IN(z1, z2, z3))
F16_IN(z0, z1) → c8(F1_IN(z0, z1))
S tuples:

F1_IN(.(z0, z1), z2) → c1(F11_IN(z0, z2, z1))
F11_IN([], z0, z1) → c3(F16_IN(z1, z0))
F16_IN(z0, z1) → c8(F1_IN(z0, z1))
K tuples:

F11_IN(.(z0, z1), .(z0, z2), z3) → c4(F11_IN(z1, z2, z3))
Defined Rule Symbols:

f1_in, U1, f11_in, U2, U3, f16_in, U4

Defined Pair Symbols:

F1_IN, F11_IN, F16_IN

Compound Symbols:

c1, c3, c4, c8

(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F1_IN(.(z0, z1), z2) → c1(F11_IN(z0, z2, z1))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(.(z0, z1), z2) → c1(F11_IN(z0, z2, z1))
F11_IN([], z0, z1) → c3(F16_IN(z1, z0))
F11_IN(.(z0, z1), .(z0, z2), z3) → c4(F11_IN(z1, z2, z3))
F16_IN(z0, z1) → c8(F1_IN(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [2] + x1 + x2   
POL(F11_IN(x1, x2, x3)) = x3   
POL(F16_IN(x1, x2)) = x1   
POL(F1_IN(x1, x2)) = x1   
POL([]) = 0   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c8(x1)) = x1   

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([], []) → f1_out1(0)
f1_in(.(z0, z1), z2) → U1(f11_in(z0, z2, z1), .(z0, z1), z2)
U1(f11_out1(z0, z1), .(z2, z3), z4) → f1_out1(s(z1))
f11_in([], z0, z1) → U2(f16_in(z1, z0), [], z0, z1)
f11_in(.(z0, z1), .(z0, z2), z3) → U3(f11_in(z1, z2, z3), .(z0, z1), .(z0, z2), z3)
U2(f16_out1(z0), [], z1, z2) → f11_out1(z1, z0)
U2(f16_out2(z0, z1), [], z2, z3) → f11_out1(z0, z1)
U3(f11_out1(z0, z1), .(z2, z3), .(z2, z4), z5) → f11_out1(z0, z1)
f16_in(z0, z1) → U4(f1_in(z0, z1), f21_in(z1, z0), z0, z1)
U4(f1_out1(z0), z1, z2, z3) → f16_out1(z0)
U4(z0, f21_out1(z1, z2), z3, z4) → f16_out2(z1, z2)
Tuples:

F1_IN(.(z0, z1), z2) → c1(F11_IN(z0, z2, z1))
F11_IN([], z0, z1) → c3(F16_IN(z1, z0))
F11_IN(.(z0, z1), .(z0, z2), z3) → c4(F11_IN(z1, z2, z3))
F16_IN(z0, z1) → c8(F1_IN(z0, z1))
S tuples:

F11_IN([], z0, z1) → c3(F16_IN(z1, z0))
F16_IN(z0, z1) → c8(F1_IN(z0, z1))
K tuples:

F11_IN(.(z0, z1), .(z0, z2), z3) → c4(F11_IN(z1, z2, z3))
F1_IN(.(z0, z1), z2) → c1(F11_IN(z0, z2, z1))
Defined Rule Symbols:

f1_in, U1, f11_in, U2, U3, f16_in, U4

Defined Pair Symbols:

F1_IN, F11_IN, F16_IN

Compound Symbols:

c1, c3, c4, c8

(19) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F11_IN([], z0, z1) → c3(F16_IN(z1, z0))
F16_IN(z0, z1) → c8(F1_IN(z0, z1))
F16_IN(z0, z1) → c8(F1_IN(z0, z1))
F1_IN(.(z0, z1), z2) → c1(F11_IN(z0, z2, z1))
Now S is empty

(20) BOUNDS(O(1), O(1))