(0) Obligation:

Clauses:

delete(X, tree(X, void, Right), Right).
delete(X, tree(X, Left, void), Left).
delete(X, tree(X, Left, Right), tree(Y, Left, Right1)) :- delmin(Right, Y, Right1).
delete(X, tree(Y, Left, Right), tree(Y, Left1, Right)) :- ','(less(X, Y), delete(X, Left, Left1)).
delete(X, tree(Y, Left, Right), tree(Y, Left, Right1)) :- ','(less(Y, X), delete(X, Right, Right1)).
delmin(tree(Y, void, Right), Y, Right).
delmin(tree(X, Left, X1), Y, tree(X, Left1, X2)) :- delmin(Left, Y, Left1).
less(0, s(X3)).
less(s(X), s(Y)) :- less(X, Y).

Query: delmin(a,a,g)

(1) LPReorderTransformerProof (EQUIVALENT transformation)

Reordered facts before rules in definite LP [PROLOG].

(2) Obligation:

Clauses:

delete(X, tree(X, void, Right), Right).
delete(X, tree(X, Left, void), Left).
delmin(tree(Y, void, Right), Y, Right).
less(0, s(X3)).
delete(X, tree(X, Left, Right), tree(Y, Left, Right1)) :- delmin(Right, Y, Right1).
delete(X, tree(Y, Left, Right), tree(Y, Left1, Right)) :- ','(less(X, Y), delete(X, Left, Left1)).
delete(X, tree(Y, Left, Right), tree(Y, Left, Right1)) :- ','(less(Y, X), delete(X, Right, Right1)).
delmin(tree(X, Left, X1), Y, tree(X, Left1, X2)) :- delmin(Left, Y, Left1).
less(s(X), s(Y)) :- less(X, Y).

Query: delmin(a,a,g)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → f1_out1
f1_in(tree(z0, z1, z2)) → U1(f1_in(z1), tree(z0, z1, z2))
f1_in(tree(z0, z1, z2)) → U2(f1_in(z1), tree(z0, z1, z2))
U1(f1_out1, tree(z0, z1, z2)) → f1_out1
U2(f1_out1, tree(z0, z1, z2)) → f1_out1
Tuples:

F1_IN(tree(z0, z1, z2)) → c1(U1'(f1_in(z1), tree(z0, z1, z2)), F1_IN(z1))
F1_IN(tree(z0, z1, z2)) → c2(U2'(f1_in(z1), tree(z0, z1, z2)), F1_IN(z1))
S tuples:

F1_IN(tree(z0, z1, z2)) → c1(U1'(f1_in(z1), tree(z0, z1, z2)), F1_IN(z1))
F1_IN(tree(z0, z1, z2)) → c2(U2'(f1_in(z1), tree(z0, z1, z2)), F1_IN(z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1, c2

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → f1_out1
f1_in(tree(z0, z1, z2)) → U1(f1_in(z1), tree(z0, z1, z2))
f1_in(tree(z0, z1, z2)) → U2(f1_in(z1), tree(z0, z1, z2))
U1(f1_out1, tree(z0, z1, z2)) → f1_out1
U2(f1_out1, tree(z0, z1, z2)) → f1_out1
Tuples:

F1_IN(tree(z0, z1, z2)) → c1(F1_IN(z1))
F1_IN(tree(z0, z1, z2)) → c2(F1_IN(z1))
S tuples:

F1_IN(tree(z0, z1, z2)) → c1(F1_IN(z1))
F1_IN(tree(z0, z1, z2)) → c2(F1_IN(z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1, c2

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F1_IN(tree(z0, z1, z2)) → c1(F1_IN(z1))
F1_IN(tree(z0, z1, z2)) → c2(F1_IN(z1))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(tree(z0, z1, z2)) → c1(F1_IN(z1))
F1_IN(tree(z0, z1, z2)) → c2(F1_IN(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F1_IN(x1)) = x1   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(tree(x1, x2, x3)) = [2] + x2   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0) → f1_out1
f1_in(tree(z0, z1, z2)) → U1(f1_in(z1), tree(z0, z1, z2))
f1_in(tree(z0, z1, z2)) → U2(f1_in(z1), tree(z0, z1, z2))
U1(f1_out1, tree(z0, z1, z2)) → f1_out1
U2(f1_out1, tree(z0, z1, z2)) → f1_out1
Tuples:

F1_IN(tree(z0, z1, z2)) → c1(F1_IN(z1))
F1_IN(tree(z0, z1, z2)) → c2(F1_IN(z1))
S tuples:none
K tuples:

F1_IN(tree(z0, z1, z2)) → c1(F1_IN(z1))
F1_IN(tree(z0, z1, z2)) → c2(F1_IN(z1))
Defined Rule Symbols:

f1_in, U1, U2

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1, c2

(9) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(10) BOUNDS(O(1), O(1))

(11) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → f2_out1
f2_in(tree(z0, z1, z2)) → f2_out1
f2_in(tree(z0, tree(z1, z2, z3), z4)) → U1(f2_in(z2), tree(z0, tree(z1, z2, z3), z4))
f2_in(tree(z0, tree(z1, z2, z3), z4)) → U2(f2_in(z2), tree(z0, tree(z1, z2, z3), z4))
f2_in(tree(z0, tree(z1, z2, z3), z4)) → U3(f2_in(z2), tree(z0, tree(z1, z2, z3), z4))
f2_in(tree(z0, tree(z1, z2, z3), z4)) → U4(f2_in(z2), tree(z0, tree(z1, z2, z3), z4))
U1(f2_out1, tree(z0, tree(z1, z2, z3), z4)) → f2_out1
U2(f2_out1, tree(z0, tree(z1, z2, z3), z4)) → f2_out1
U3(f2_out1, tree(z0, tree(z1, z2, z3), z4)) → f2_out1
U4(f2_out1, tree(z0, tree(z1, z2, z3), z4)) → f2_out1
Tuples:

F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c2(U1'(f2_in(z2), tree(z0, tree(z1, z2, z3), z4)), F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c3(U2'(f2_in(z2), tree(z0, tree(z1, z2, z3), z4)), F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c4(U3'(f2_in(z2), tree(z0, tree(z1, z2, z3), z4)), F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c5(U4'(f2_in(z2), tree(z0, tree(z1, z2, z3), z4)), F2_IN(z2))
S tuples:

F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c2(U1'(f2_in(z2), tree(z0, tree(z1, z2, z3), z4)), F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c3(U2'(f2_in(z2), tree(z0, tree(z1, z2, z3), z4)), F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c4(U3'(f2_in(z2), tree(z0, tree(z1, z2, z3), z4)), F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c5(U4'(f2_in(z2), tree(z0, tree(z1, z2, z3), z4)), F2_IN(z2))
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2, U3, U4

Defined Pair Symbols:

F2_IN

Compound Symbols:

c2, c3, c4, c5

(13) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → f2_out1
f2_in(tree(z0, z1, z2)) → f2_out1
f2_in(tree(z0, tree(z1, z2, z3), z4)) → U1(f2_in(z2), tree(z0, tree(z1, z2, z3), z4))
f2_in(tree(z0, tree(z1, z2, z3), z4)) → U2(f2_in(z2), tree(z0, tree(z1, z2, z3), z4))
f2_in(tree(z0, tree(z1, z2, z3), z4)) → U3(f2_in(z2), tree(z0, tree(z1, z2, z3), z4))
f2_in(tree(z0, tree(z1, z2, z3), z4)) → U4(f2_in(z2), tree(z0, tree(z1, z2, z3), z4))
U1(f2_out1, tree(z0, tree(z1, z2, z3), z4)) → f2_out1
U2(f2_out1, tree(z0, tree(z1, z2, z3), z4)) → f2_out1
U3(f2_out1, tree(z0, tree(z1, z2, z3), z4)) → f2_out1
U4(f2_out1, tree(z0, tree(z1, z2, z3), z4)) → f2_out1
Tuples:

F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c2(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c3(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c4(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c5(F2_IN(z2))
S tuples:

F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c2(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c3(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c4(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c5(F2_IN(z2))
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2, U3, U4

Defined Pair Symbols:

F2_IN

Compound Symbols:

c2, c3, c4, c5

(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c2(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c3(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c4(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c5(F2_IN(z2))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c2(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c3(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c4(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c5(F2_IN(z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F2_IN(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(tree(x1, x2, x3)) = [2] + x2   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0) → f2_out1
f2_in(tree(z0, z1, z2)) → f2_out1
f2_in(tree(z0, tree(z1, z2, z3), z4)) → U1(f2_in(z2), tree(z0, tree(z1, z2, z3), z4))
f2_in(tree(z0, tree(z1, z2, z3), z4)) → U2(f2_in(z2), tree(z0, tree(z1, z2, z3), z4))
f2_in(tree(z0, tree(z1, z2, z3), z4)) → U3(f2_in(z2), tree(z0, tree(z1, z2, z3), z4))
f2_in(tree(z0, tree(z1, z2, z3), z4)) → U4(f2_in(z2), tree(z0, tree(z1, z2, z3), z4))
U1(f2_out1, tree(z0, tree(z1, z2, z3), z4)) → f2_out1
U2(f2_out1, tree(z0, tree(z1, z2, z3), z4)) → f2_out1
U3(f2_out1, tree(z0, tree(z1, z2, z3), z4)) → f2_out1
U4(f2_out1, tree(z0, tree(z1, z2, z3), z4)) → f2_out1
Tuples:

F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c2(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c3(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c4(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c5(F2_IN(z2))
S tuples:none
K tuples:

F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c2(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c3(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c4(F2_IN(z2))
F2_IN(tree(z0, tree(z1, z2, z3), z4)) → c5(F2_IN(z2))
Defined Rule Symbols:

f2_in, U1, U2, U3, U4

Defined Pair Symbols:

F2_IN

Compound Symbols:

c2, c3, c4, c5