(0) Obligation:
Clauses:
select(X1, [], X2) :- ','(!, failure(a)).
select(X, Y, Zs) :- ','(head(Y, X), tail(Y, Zs)).
select(X, Y, .(H, Zs)) :- ','(head(Y, H), ','(tail(Y, T), select(X, T, Zs))).
head([], X3).
head(.(H, X4), H).
tail([], []).
tail(.(X5, T), T).
failure(b).
Query: select(g,g,a)
(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0, .(z0, z1)) → f2_out1
f2_in(z0, .(z0, z1)) → U1(f2_in(z0, z1), z0, .(z0, z1))
f2_in(z0, .(z0, z1)) → U2(f2_in(z0, z1), z0, .(z0, z1))
f2_in(z0, .(z1, z2)) → U3(f2_in(z0, z2), z0, .(z1, z2))
U1(f2_out1, z0, .(z0, z1)) → f2_out1
U2(f2_out1, z0, .(z0, z1)) → f2_out1
U3(f2_out1, z0, .(z1, z2)) → f2_out1
Tuples:
F2_IN(z0, .(z0, z1)) → c1(U1'(f2_in(z0, z1), z0, .(z0, z1)), F2_IN(z0, z1))
F2_IN(z0, .(z0, z1)) → c2(U2'(f2_in(z0, z1), z0, .(z0, z1)), F2_IN(z0, z1))
F2_IN(z0, .(z1, z2)) → c3(U3'(f2_in(z0, z2), z0, .(z1, z2)), F2_IN(z0, z2))
S tuples:
F2_IN(z0, .(z0, z1)) → c1(U1'(f2_in(z0, z1), z0, .(z0, z1)), F2_IN(z0, z1))
F2_IN(z0, .(z0, z1)) → c2(U2'(f2_in(z0, z1), z0, .(z0, z1)), F2_IN(z0, z1))
F2_IN(z0, .(z1, z2)) → c3(U3'(f2_in(z0, z2), z0, .(z1, z2)), F2_IN(z0, z2))
K tuples:none
Defined Rule Symbols:
f2_in, U1, U2, U3
Defined Pair Symbols:
F2_IN
Compound Symbols:
c1, c2, c3
(3) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0, .(z0, z1)) → f2_out1
f2_in(z0, .(z0, z1)) → U1(f2_in(z0, z1), z0, .(z0, z1))
f2_in(z0, .(z0, z1)) → U2(f2_in(z0, z1), z0, .(z0, z1))
f2_in(z0, .(z1, z2)) → U3(f2_in(z0, z2), z0, .(z1, z2))
U1(f2_out1, z0, .(z0, z1)) → f2_out1
U2(f2_out1, z0, .(z0, z1)) → f2_out1
U3(f2_out1, z0, .(z1, z2)) → f2_out1
Tuples:
F2_IN(z0, .(z0, z1)) → c1(F2_IN(z0, z1))
F2_IN(z0, .(z0, z1)) → c2(F2_IN(z0, z1))
F2_IN(z0, .(z1, z2)) → c3(F2_IN(z0, z2))
S tuples:
F2_IN(z0, .(z0, z1)) → c1(F2_IN(z0, z1))
F2_IN(z0, .(z0, z1)) → c2(F2_IN(z0, z1))
F2_IN(z0, .(z1, z2)) → c3(F2_IN(z0, z2))
K tuples:none
Defined Rule Symbols:
f2_in, U1, U2, U3
Defined Pair Symbols:
F2_IN
Compound Symbols:
c1, c2, c3
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F2_IN(z0, .(z0, z1)) → c1(F2_IN(z0, z1))
F2_IN(z0, .(z0, z1)) → c2(F2_IN(z0, z1))
F2_IN(z0, .(z1, z2)) → c3(F2_IN(z0, z2))
We considered the (Usable) Rules:none
And the Tuples:
F2_IN(z0, .(z0, z1)) → c1(F2_IN(z0, z1))
F2_IN(z0, .(z0, z1)) → c2(F2_IN(z0, z1))
F2_IN(z0, .(z1, z2)) → c3(F2_IN(z0, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [2] + x2
POL(F2_IN(x1, x2)) = [2]x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0, .(z0, z1)) → f2_out1
f2_in(z0, .(z0, z1)) → U1(f2_in(z0, z1), z0, .(z0, z1))
f2_in(z0, .(z0, z1)) → U2(f2_in(z0, z1), z0, .(z0, z1))
f2_in(z0, .(z1, z2)) → U3(f2_in(z0, z2), z0, .(z1, z2))
U1(f2_out1, z0, .(z0, z1)) → f2_out1
U2(f2_out1, z0, .(z0, z1)) → f2_out1
U3(f2_out1, z0, .(z1, z2)) → f2_out1
Tuples:
F2_IN(z0, .(z0, z1)) → c1(F2_IN(z0, z1))
F2_IN(z0, .(z0, z1)) → c2(F2_IN(z0, z1))
F2_IN(z0, .(z1, z2)) → c3(F2_IN(z0, z2))
S tuples:none
K tuples:
F2_IN(z0, .(z0, z1)) → c1(F2_IN(z0, z1))
F2_IN(z0, .(z0, z1)) → c2(F2_IN(z0, z1))
F2_IN(z0, .(z1, z2)) → c3(F2_IN(z0, z2))
Defined Rule Symbols:
f2_in, U1, U2, U3
Defined Pair Symbols:
F2_IN
Compound Symbols:
c1, c2, c3
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))
(9) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0, .(z0, z1)) → f1_out1
f1_in(z0, .(z0, z1)) → U1(f1_in(z0, z1), z0, .(z0, z1))
f1_in(z0, .(z0, z1)) → U2(f1_in(z0, z1), z0, .(z0, z1))
f1_in(z0, .(z1, z2)) → U3(f1_in(z0, z2), z0, .(z1, z2))
U1(f1_out1, z0, .(z0, z1)) → f1_out1
U2(f1_out1, z0, .(z0, z1)) → f1_out1
U3(f1_out1, z0, .(z1, z2)) → f1_out1
Tuples:
F1_IN(z0, .(z0, z1)) → c1(U1'(f1_in(z0, z1), z0, .(z0, z1)), F1_IN(z0, z1))
F1_IN(z0, .(z0, z1)) → c2(U2'(f1_in(z0, z1), z0, .(z0, z1)), F1_IN(z0, z1))
F1_IN(z0, .(z1, z2)) → c3(U3'(f1_in(z0, z2), z0, .(z1, z2)), F1_IN(z0, z2))
S tuples:
F1_IN(z0, .(z0, z1)) → c1(U1'(f1_in(z0, z1), z0, .(z0, z1)), F1_IN(z0, z1))
F1_IN(z0, .(z0, z1)) → c2(U2'(f1_in(z0, z1), z0, .(z0, z1)), F1_IN(z0, z1))
F1_IN(z0, .(z1, z2)) → c3(U3'(f1_in(z0, z2), z0, .(z1, z2)), F1_IN(z0, z2))
K tuples:none
Defined Rule Symbols:
f1_in, U1, U2, U3
Defined Pair Symbols:
F1_IN
Compound Symbols:
c1, c2, c3
(11) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0, .(z0, z1)) → f1_out1
f1_in(z0, .(z0, z1)) → U1(f1_in(z0, z1), z0, .(z0, z1))
f1_in(z0, .(z0, z1)) → U2(f1_in(z0, z1), z0, .(z0, z1))
f1_in(z0, .(z1, z2)) → U3(f1_in(z0, z2), z0, .(z1, z2))
U1(f1_out1, z0, .(z0, z1)) → f1_out1
U2(f1_out1, z0, .(z0, z1)) → f1_out1
U3(f1_out1, z0, .(z1, z2)) → f1_out1
Tuples:
F1_IN(z0, .(z0, z1)) → c1(F1_IN(z0, z1))
F1_IN(z0, .(z0, z1)) → c2(F1_IN(z0, z1))
F1_IN(z0, .(z1, z2)) → c3(F1_IN(z0, z2))
S tuples:
F1_IN(z0, .(z0, z1)) → c1(F1_IN(z0, z1))
F1_IN(z0, .(z0, z1)) → c2(F1_IN(z0, z1))
F1_IN(z0, .(z1, z2)) → c3(F1_IN(z0, z2))
K tuples:none
Defined Rule Symbols:
f1_in, U1, U2, U3
Defined Pair Symbols:
F1_IN
Compound Symbols:
c1, c2, c3
(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F1_IN(z0, .(z0, z1)) → c1(F1_IN(z0, z1))
F1_IN(z0, .(z0, z1)) → c2(F1_IN(z0, z1))
F1_IN(z0, .(z1, z2)) → c3(F1_IN(z0, z2))
We considered the (Usable) Rules:none
And the Tuples:
F1_IN(z0, .(z0, z1)) → c1(F1_IN(z0, z1))
F1_IN(z0, .(z0, z1)) → c2(F1_IN(z0, z1))
F1_IN(z0, .(z1, z2)) → c3(F1_IN(z0, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [2] + x2
POL(F1_IN(x1, x2)) = [2]x2
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(c3(x1)) = x1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0, .(z0, z1)) → f1_out1
f1_in(z0, .(z0, z1)) → U1(f1_in(z0, z1), z0, .(z0, z1))
f1_in(z0, .(z0, z1)) → U2(f1_in(z0, z1), z0, .(z0, z1))
f1_in(z0, .(z1, z2)) → U3(f1_in(z0, z2), z0, .(z1, z2))
U1(f1_out1, z0, .(z0, z1)) → f1_out1
U2(f1_out1, z0, .(z0, z1)) → f1_out1
U3(f1_out1, z0, .(z1, z2)) → f1_out1
Tuples:
F1_IN(z0, .(z0, z1)) → c1(F1_IN(z0, z1))
F1_IN(z0, .(z0, z1)) → c2(F1_IN(z0, z1))
F1_IN(z0, .(z1, z2)) → c3(F1_IN(z0, z2))
S tuples:none
K tuples:
F1_IN(z0, .(z0, z1)) → c1(F1_IN(z0, z1))
F1_IN(z0, .(z0, z1)) → c2(F1_IN(z0, z1))
F1_IN(z0, .(z1, z2)) → c3(F1_IN(z0, z2))
Defined Rule Symbols:
f1_in, U1, U2, U3
Defined Pair Symbols:
F1_IN
Compound Symbols:
c1, c2, c3