(0) Obligation:
Clauses:
rev(L, R) :- rev(L, [], R).
rev([], Y, Z) :- ','(!, eq(Y, Z)).
rev(L, S, R) :- ','(head(L, X), ','(tail(L, T), rev(T, .(X, S), R))).
head([], X1).
head(.(X, X2), X).
tail([], []).
tail(.(X3, Xs), Xs).
eq(X, X).
Query: rev(g,a)
(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, []))) → f2_out1
f2_in(.(z0, .(z1, .(z2, [])))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, []))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, [])))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, []))))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, [])))))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → U1(f268_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8)))))))))
U1(f268_out1, .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → f2_out1
f268_in([], z0, z1) → f268_out1
f268_in(.(z0, z1), z2, z3) → U2(f268_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3)
U2(f268_out1, .(z0, z1), z2, z3) → f268_out1
Tuples:
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c8(U1'(f268_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))), F268_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F268_IN(.(z0, z1), z2, z3) → c11(U2'(f268_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3), F268_IN(z1, z0, .(z2, z3)))
S tuples:
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c8(U1'(f268_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))), F268_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F268_IN(.(z0, z1), z2, z3) → c11(U2'(f268_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3), F268_IN(z1, z0, .(z2, z3)))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f268_in, U2
Defined Pair Symbols:
F2_IN, F268_IN
Compound Symbols:
c8, c11
(3) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, []))) → f2_out1
f2_in(.(z0, .(z1, .(z2, [])))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, []))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, [])))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, []))))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, [])))))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → U1(f268_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8)))))))))
U1(f268_out1, .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → f2_out1
f268_in([], z0, z1) → f268_out1
f268_in(.(z0, z1), z2, z3) → U2(f268_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3)
U2(f268_out1, .(z0, z1), z2, z3) → f268_out1
Tuples:
F268_IN(.(z0, z1), z2, z3) → c11(U2'(f268_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3), F268_IN(z1, z0, .(z2, z3)))
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(U1'(f268_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))))
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F268_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
S tuples:
F268_IN(.(z0, z1), z2, z3) → c11(U2'(f268_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3), F268_IN(z1, z0, .(z2, z3)))
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(U1'(f268_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))))
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F268_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
K tuples:none
Defined Rule Symbols:
f2_in, U1, f268_in, U2
Defined Pair Symbols:
F268_IN, F2_IN
Compound Symbols:
c11, c
(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, []))) → f2_out1
f2_in(.(z0, .(z1, .(z2, [])))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, []))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, [])))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, []))))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, [])))))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → U1(f268_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8)))))))))
U1(f268_out1, .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → f2_out1
f268_in([], z0, z1) → f268_out1
f268_in(.(z0, z1), z2, z3) → U2(f268_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3)
U2(f268_out1, .(z0, z1), z2, z3) → f268_out1
Tuples:
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F268_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F268_IN(.(z0, z1), z2, z3) → c11(F268_IN(z1, z0, .(z2, z3)))
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
S tuples:
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F268_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F268_IN(.(z0, z1), z2, z3) → c11(F268_IN(z1, z0, .(z2, z3)))
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
K tuples:none
Defined Rule Symbols:
f2_in, U1, f268_in, U2
Defined Pair Symbols:
F2_IN, F268_IN
Compound Symbols:
c, c11, c
(7) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F268_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, []))) → f2_out1
f2_in(.(z0, .(z1, .(z2, [])))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, []))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, [])))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, []))))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, [])))))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → U1(f268_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8)))))))))
U1(f268_out1, .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → f2_out1
f268_in([], z0, z1) → f268_out1
f268_in(.(z0, z1), z2, z3) → U2(f268_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3)
U2(f268_out1, .(z0, z1), z2, z3) → f268_out1
Tuples:
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F268_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F268_IN(.(z0, z1), z2, z3) → c11(F268_IN(z1, z0, .(z2, z3)))
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
S tuples:
F268_IN(.(z0, z1), z2, z3) → c11(F268_IN(z1, z0, .(z2, z3)))
K tuples:
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F268_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
Defined Rule Symbols:
f2_in, U1, f268_in, U2
Defined Pair Symbols:
F2_IN, F268_IN
Compound Symbols:
c, c11, c
(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F268_IN(.(z0, z1), z2, z3) → c11(F268_IN(z1, z0, .(z2, z3)))
We considered the (Usable) Rules:none
And the Tuples:
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F268_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F268_IN(.(z0, z1), z2, z3) → c11(F268_IN(z1, z0, .(z2, z3)))
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [3] + x2
POL(F268_IN(x1, x2, x3)) = [3]x1 + x3
POL(F2_IN(x1)) = [3]x1
POL([]) = [2]
POL(c) = 0
POL(c(x1)) = x1
POL(c11(x1)) = x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in([]) → f2_out1
f2_in(.(z0, [])) → f2_out1
f2_in(.(z0, .(z1, []))) → f2_out1
f2_in(.(z0, .(z1, .(z2, [])))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, []))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, [])))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, []))))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, [])))))))) → f2_out1
f2_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → U1(f268_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8)))))))))
U1(f268_out1, .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → f2_out1
f268_in([], z0, z1) → f268_out1
f268_in(.(z0, z1), z2, z3) → U2(f268_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3)
U2(f268_out1, .(z0, z1), z2, z3) → f268_out1
Tuples:
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F268_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F268_IN(.(z0, z1), z2, z3) → c11(F268_IN(z1, z0, .(z2, z3)))
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
S tuples:none
K tuples:
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F268_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F2_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
F268_IN(.(z0, z1), z2, z3) → c11(F268_IN(z1, z0, .(z2, z3)))
Defined Rule Symbols:
f2_in, U1, f268_in, U2
Defined Pair Symbols:
F2_IN, F268_IN
Compound Symbols:
c, c11, c
(11) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(12) BOUNDS(O(1), O(1))
(13) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(z0, .(z1, []))) → f1_out1
f1_in(.(z0, .(z1, .(z2, [])))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, []))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, [])))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, []))))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, [])))))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → U1(f262_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8)))))))))
U1(f262_out1, .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → f1_out1
f262_in([], z0, z1) → f262_out1
f262_in(.(z0, z1), z2, z3) → U2(f262_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3)
U2(f262_out1, .(z0, z1), z2, z3) → f262_out1
Tuples:
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c8(U1'(f262_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))), F262_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F262_IN(.(z0, z1), z2, z3) → c11(U2'(f262_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3), F262_IN(z1, z0, .(z2, z3)))
S tuples:
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c8(U1'(f262_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))), F262_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F262_IN(.(z0, z1), z2, z3) → c11(U2'(f262_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3), F262_IN(z1, z0, .(z2, z3)))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f262_in, U2
Defined Pair Symbols:
F1_IN, F262_IN
Compound Symbols:
c8, c11
(15) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(z0, .(z1, []))) → f1_out1
f1_in(.(z0, .(z1, .(z2, [])))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, []))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, [])))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, []))))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, [])))))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → U1(f262_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8)))))))))
U1(f262_out1, .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → f1_out1
f262_in([], z0, z1) → f262_out1
f262_in(.(z0, z1), z2, z3) → U2(f262_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3)
U2(f262_out1, .(z0, z1), z2, z3) → f262_out1
Tuples:
F262_IN(.(z0, z1), z2, z3) → c11(U2'(f262_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3), F262_IN(z1, z0, .(z2, z3)))
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(U1'(f262_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))))
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F262_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
S tuples:
F262_IN(.(z0, z1), z2, z3) → c11(U2'(f262_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3), F262_IN(z1, z0, .(z2, z3)))
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(U1'(f262_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))))
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F262_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f262_in, U2
Defined Pair Symbols:
F262_IN, F1_IN
Compound Symbols:
c11, c
(17) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(z0, .(z1, []))) → f1_out1
f1_in(.(z0, .(z1, .(z2, [])))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, []))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, [])))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, []))))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, [])))))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → U1(f262_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8)))))))))
U1(f262_out1, .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → f1_out1
f262_in([], z0, z1) → f262_out1
f262_in(.(z0, z1), z2, z3) → U2(f262_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3)
U2(f262_out1, .(z0, z1), z2, z3) → f262_out1
Tuples:
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F262_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F262_IN(.(z0, z1), z2, z3) → c11(F262_IN(z1, z0, .(z2, z3)))
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
S tuples:
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F262_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F262_IN(.(z0, z1), z2, z3) → c11(F262_IN(z1, z0, .(z2, z3)))
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
K tuples:none
Defined Rule Symbols:
f1_in, U1, f262_in, U2
Defined Pair Symbols:
F1_IN, F262_IN
Compound Symbols:
c, c11, c
(19) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F262_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(z0, .(z1, []))) → f1_out1
f1_in(.(z0, .(z1, .(z2, [])))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, []))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, [])))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, []))))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, [])))))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → U1(f262_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8)))))))))
U1(f262_out1, .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → f1_out1
f262_in([], z0, z1) → f262_out1
f262_in(.(z0, z1), z2, z3) → U2(f262_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3)
U2(f262_out1, .(z0, z1), z2, z3) → f262_out1
Tuples:
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F262_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F262_IN(.(z0, z1), z2, z3) → c11(F262_IN(z1, z0, .(z2, z3)))
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
S tuples:
F262_IN(.(z0, z1), z2, z3) → c11(F262_IN(z1, z0, .(z2, z3)))
K tuples:
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F262_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
Defined Rule Symbols:
f1_in, U1, f262_in, U2
Defined Pair Symbols:
F1_IN, F262_IN
Compound Symbols:
c, c11, c
(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F262_IN(.(z0, z1), z2, z3) → c11(F262_IN(z1, z0, .(z2, z3)))
We considered the (Usable) Rules:none
And the Tuples:
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F262_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F262_IN(.(z0, z1), z2, z3) → c11(F262_IN(z1, z0, .(z2, z3)))
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [3] + x2
POL(F1_IN(x1)) = [3]x1
POL(F262_IN(x1, x2, x3)) = [3]x1 + x3
POL([]) = [2]
POL(c) = 0
POL(c(x1)) = x1
POL(c11(x1)) = x1
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in([]) → f1_out1
f1_in(.(z0, [])) → f1_out1
f1_in(.(z0, .(z1, []))) → f1_out1
f1_in(.(z0, .(z1, .(z2, [])))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, []))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, [])))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, []))))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, [])))))))) → f1_out1
f1_in(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → U1(f262_in(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))), .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8)))))))))
U1(f262_out1, .(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → f1_out1
f262_in([], z0, z1) → f262_out1
f262_in(.(z0, z1), z2, z3) → U2(f262_in(z1, z0, .(z2, z3)), .(z0, z1), z2, z3)
U2(f262_out1, .(z0, z1), z2, z3) → f262_out1
Tuples:
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F262_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F262_IN(.(z0, z1), z2, z3) → c11(F262_IN(z1, z0, .(z2, z3)))
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
S tuples:none
K tuples:
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c(F262_IN(z8, z7, .(z6, .(z5, .(z4, .(z3, .(z2, .(z1, .(z0, [])))))))))
F1_IN(.(z0, .(z1, .(z2, .(z3, .(z4, .(z5, .(z6, .(z7, z8))))))))) → c
F262_IN(.(z0, z1), z2, z3) → c11(F262_IN(z1, z0, .(z2, z3)))
Defined Rule Symbols:
f1_in, U1, f262_in, U2
Defined Pair Symbols:
F1_IN, F262_IN
Compound Symbols:
c, c11, c