(0) Obligation:

Clauses:

f(X) :- ','(p(X), q(X)).
p(a) :- !.
p(X) :- p(Y).
q(b).

Query: f(a)

(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_inU1(f6_in)
U1(f6_out1(z0)) → f2_out1(z0)
f15_inf15_out1
f17_inf17_out1(b)
f6_inU2(f15_in)
U2(f15_out1) → U3(f17_in)
U3(f17_out1(z0)) → f6_out1(z0)
Tuples:

F2_INc(U1'(f6_in), F6_IN)
F6_INc4(U2'(f15_in), F15_IN)
U2'(f15_out1) → c5(U3'(f17_in), F17_IN)
S tuples:

F2_INc(U1'(f6_in), F6_IN)
F6_INc4(U2'(f15_in), F15_IN)
U2'(f15_out1) → c5(U3'(f17_in), F17_IN)
K tuples:none
Defined Rule Symbols:

f2_in, U1, f15_in, f17_in, f6_in, U2, U3

Defined Pair Symbols:

F2_IN, F6_IN, U2'

Compound Symbols:

c, c4, c5

(3) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_inU1(f6_in)
U1(f6_out1(z0)) → f2_out1(z0)
f15_inf15_out1
f17_inf17_out1(b)
f6_inU2(f15_in)
U2(f15_out1) → U3(f17_in)
U3(f17_out1(z0)) → f6_out1(z0)
Tuples:

F2_INc1(U1'(f6_in))
F2_INc1(F6_IN)
F6_INc1(U2'(f15_in))
F6_INc1(F15_IN)
U2'(f15_out1) → c1(U3'(f17_in))
U2'(f15_out1) → c1(F17_IN)
S tuples:

F2_INc1(U1'(f6_in))
F2_INc1(F6_IN)
F6_INc1(U2'(f15_in))
F6_INc1(F15_IN)
U2'(f15_out1) → c1(U3'(f17_in))
U2'(f15_out1) → c1(F17_IN)
K tuples:none
Defined Rule Symbols:

f2_in, U1, f15_in, f17_in, f6_in, U2, U3

Defined Pair Symbols:

F2_IN, F6_IN, U2'

Compound Symbols:

c1

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_inU1(f6_in)
U1(f6_out1(z0)) → f2_out1(z0)
f15_inf15_out1
f17_inf17_out1(b)
f6_inU2(f15_in)
U2(f15_out1) → U3(f17_in)
U3(f17_out1(z0)) → f6_out1(z0)
Tuples:

F2_INc1(F6_IN)
F6_INc1(U2'(f15_in))
F2_INc1
F6_INc1
U2'(f15_out1) → c1
S tuples:

F2_INc1(F6_IN)
F6_INc1(U2'(f15_in))
F2_INc1
F6_INc1
U2'(f15_out1) → c1
K tuples:none
Defined Rule Symbols:

f2_in, U1, f15_in, f17_in, f6_in, U2, U3

Defined Pair Symbols:

F2_IN, F6_IN, U2'

Compound Symbols:

c1, c1

(7) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F2_INc1(F6_IN)
F6_INc1(U2'(f15_in))
F2_INc1
F6_INc1
U2'(f15_out1) → c1
U2'(f15_out1) → c1
F6_INc1(U2'(f15_in))
F6_INc1
U2'(f15_out1) → c1
U2'(f15_out1) → c1
Now S is empty

(8) BOUNDS(O(1), O(1))

(9) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_inU1(f13_in)
U1(f13_out1(z0)) → f1_out1(z0)
f14_inf14_out1
f16_inf16_out1(b)
f13_inU2(f14_in)
U2(f14_out1) → U3(f16_in)
U3(f16_out1(z0)) → f13_out1(z0)
Tuples:

F1_INc(U1'(f13_in), F13_IN)
F13_INc4(U2'(f14_in), F14_IN)
U2'(f14_out1) → c5(U3'(f16_in), F16_IN)
S tuples:

F1_INc(U1'(f13_in), F13_IN)
F13_INc4(U2'(f14_in), F14_IN)
U2'(f14_out1) → c5(U3'(f16_in), F16_IN)
K tuples:none
Defined Rule Symbols:

f1_in, U1, f14_in, f16_in, f13_in, U2, U3

Defined Pair Symbols:

F1_IN, F13_IN, U2'

Compound Symbols:

c, c4, c5

(11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_inU1(f13_in)
U1(f13_out1(z0)) → f1_out1(z0)
f14_inf14_out1
f16_inf16_out1(b)
f13_inU2(f14_in)
U2(f14_out1) → U3(f16_in)
U3(f16_out1(z0)) → f13_out1(z0)
Tuples:

F1_INc1(U1'(f13_in))
F1_INc1(F13_IN)
F13_INc1(U2'(f14_in))
F13_INc1(F14_IN)
U2'(f14_out1) → c1(U3'(f16_in))
U2'(f14_out1) → c1(F16_IN)
S tuples:

F1_INc1(U1'(f13_in))
F1_INc1(F13_IN)
F13_INc1(U2'(f14_in))
F13_INc1(F14_IN)
U2'(f14_out1) → c1(U3'(f16_in))
U2'(f14_out1) → c1(F16_IN)
K tuples:none
Defined Rule Symbols:

f1_in, U1, f14_in, f16_in, f13_in, U2, U3

Defined Pair Symbols:

F1_IN, F13_IN, U2'

Compound Symbols:

c1

(13) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_inU1(f13_in)
U1(f13_out1(z0)) → f1_out1(z0)
f14_inf14_out1
f16_inf16_out1(b)
f13_inU2(f14_in)
U2(f14_out1) → U3(f16_in)
U3(f16_out1(z0)) → f13_out1(z0)
Tuples:

F1_INc1(F13_IN)
F13_INc1(U2'(f14_in))
F1_INc1
F13_INc1
U2'(f14_out1) → c1
S tuples:

F1_INc1(F13_IN)
F13_INc1(U2'(f14_in))
F1_INc1
F13_INc1
U2'(f14_out1) → c1
K tuples:none
Defined Rule Symbols:

f1_in, U1, f14_in, f16_in, f13_in, U2, U3

Defined Pair Symbols:

F1_IN, F13_IN, U2'

Compound Symbols:

c1, c1