(0) Obligation:
Clauses:
f(X) :- ','(p(X), q(X)).
p(a).
p(X) :- ','(p(a), !).
q(b).
Query: f(a)
(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in → f2_out1(b)
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
f2_in
Defined Pair Symbols:none
Compound Symbols:none
(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in → U1(f6_in)
U1(f6_out1(z0)) → f1_out1(z0)
f24_in → f24_out1
f25_in → f25_out1(b)
f6_in → U2(f24_in)
U2(f24_out1) → U3(f25_in)
U3(f25_out1(z0)) → f6_out1(z0)
Tuples:
F1_IN → c(U1'(f6_in), F6_IN)
F6_IN → c4(U2'(f24_in), F24_IN)
U2'(f24_out1) → c5(U3'(f25_in), F25_IN)
S tuples:
F1_IN → c(U1'(f6_in), F6_IN)
F6_IN → c4(U2'(f24_in), F24_IN)
U2'(f24_out1) → c5(U3'(f25_in), F25_IN)
K tuples:none
Defined Rule Symbols:
f1_in, U1, f24_in, f25_in, f6_in, U2, U3
Defined Pair Symbols:
F1_IN, F6_IN, U2'
Compound Symbols:
c, c4, c5
(5) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in → U1(f6_in)
U1(f6_out1(z0)) → f1_out1(z0)
f24_in → f24_out1
f25_in → f25_out1(b)
f6_in → U2(f24_in)
U2(f24_out1) → U3(f25_in)
U3(f25_out1(z0)) → f6_out1(z0)
Tuples:
F1_IN → c1(U1'(f6_in))
F1_IN → c1(F6_IN)
F6_IN → c1(U2'(f24_in))
F6_IN → c1(F24_IN)
U2'(f24_out1) → c1(U3'(f25_in))
U2'(f24_out1) → c1(F25_IN)
S tuples:
F1_IN → c1(U1'(f6_in))
F1_IN → c1(F6_IN)
F6_IN → c1(U2'(f24_in))
F6_IN → c1(F24_IN)
U2'(f24_out1) → c1(U3'(f25_in))
U2'(f24_out1) → c1(F25_IN)
K tuples:none
Defined Rule Symbols:
f1_in, U1, f24_in, f25_in, f6_in, U2, U3
Defined Pair Symbols:
F1_IN, F6_IN, U2'
Compound Symbols:
c1
(7) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in → U1(f6_in)
U1(f6_out1(z0)) → f1_out1(z0)
f24_in → f24_out1
f25_in → f25_out1(b)
f6_in → U2(f24_in)
U2(f24_out1) → U3(f25_in)
U3(f25_out1(z0)) → f6_out1(z0)
Tuples:
F1_IN → c1(F6_IN)
F6_IN → c1(U2'(f24_in))
F1_IN → c1
F6_IN → c1
U2'(f24_out1) → c1
S tuples:
F1_IN → c1(F6_IN)
F6_IN → c1(U2'(f24_in))
F1_IN → c1
F6_IN → c1
U2'(f24_out1) → c1
K tuples:none
Defined Rule Symbols:
f1_in, U1, f24_in, f25_in, f6_in, U2, U3
Defined Pair Symbols:
F1_IN, F6_IN, U2'
Compound Symbols:
c1, c1
(9) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F1_IN → c1(F6_IN)
F6_IN → c1(U2'(f24_in))
F1_IN → c1
F6_IN → c1
U2'(f24_out1) → c1
U2'(f24_out1) → c1
F6_IN → c1(U2'(f24_in))
F6_IN → c1
U2'(f24_out1) → c1
U2'(f24_out1) → c1
Now S is empty
(10) BOUNDS(O(1), O(1))