(0) Obligation:

Clauses:

f(X) :- ','(p(X), q(X)).
p(a).
p(X) :- ','(p(a), !).
q(b).

Query: f(a)

(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_inf2_out1(b)
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:

f2_in

Defined Pair Symbols:none

Compound Symbols:none

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_inU1(f6_in)
U1(f6_out1(z0)) → f1_out1(z0)
f24_inf24_out1
f25_inf25_out1(b)
f6_inU2(f24_in)
U2(f24_out1) → U3(f25_in)
U3(f25_out1(z0)) → f6_out1(z0)
Tuples:

F1_INc(U1'(f6_in), F6_IN)
F6_INc4(U2'(f24_in), F24_IN)
U2'(f24_out1) → c5(U3'(f25_in), F25_IN)
S tuples:

F1_INc(U1'(f6_in), F6_IN)
F6_INc4(U2'(f24_in), F24_IN)
U2'(f24_out1) → c5(U3'(f25_in), F25_IN)
K tuples:none
Defined Rule Symbols:

f1_in, U1, f24_in, f25_in, f6_in, U2, U3

Defined Pair Symbols:

F1_IN, F6_IN, U2'

Compound Symbols:

c, c4, c5

(5) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_inU1(f6_in)
U1(f6_out1(z0)) → f1_out1(z0)
f24_inf24_out1
f25_inf25_out1(b)
f6_inU2(f24_in)
U2(f24_out1) → U3(f25_in)
U3(f25_out1(z0)) → f6_out1(z0)
Tuples:

F1_INc1(U1'(f6_in))
F1_INc1(F6_IN)
F6_INc1(U2'(f24_in))
F6_INc1(F24_IN)
U2'(f24_out1) → c1(U3'(f25_in))
U2'(f24_out1) → c1(F25_IN)
S tuples:

F1_INc1(U1'(f6_in))
F1_INc1(F6_IN)
F6_INc1(U2'(f24_in))
F6_INc1(F24_IN)
U2'(f24_out1) → c1(U3'(f25_in))
U2'(f24_out1) → c1(F25_IN)
K tuples:none
Defined Rule Symbols:

f1_in, U1, f24_in, f25_in, f6_in, U2, U3

Defined Pair Symbols:

F1_IN, F6_IN, U2'

Compound Symbols:

c1

(7) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_inU1(f6_in)
U1(f6_out1(z0)) → f1_out1(z0)
f24_inf24_out1
f25_inf25_out1(b)
f6_inU2(f24_in)
U2(f24_out1) → U3(f25_in)
U3(f25_out1(z0)) → f6_out1(z0)
Tuples:

F1_INc1(F6_IN)
F6_INc1(U2'(f24_in))
F1_INc1
F6_INc1
U2'(f24_out1) → c1
S tuples:

F1_INc1(F6_IN)
F6_INc1(U2'(f24_in))
F1_INc1
F6_INc1
U2'(f24_out1) → c1
K tuples:none
Defined Rule Symbols:

f1_in, U1, f24_in, f25_in, f6_in, U2, U3

Defined Pair Symbols:

F1_IN, F6_IN, U2'

Compound Symbols:

c1, c1

(9) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F1_INc1(F6_IN)
F6_INc1(U2'(f24_in))
F1_INc1
F6_INc1
U2'(f24_out1) → c1
U2'(f24_out1) → c1
F6_INc1(U2'(f24_in))
F6_INc1
U2'(f24_out1) → c1
U2'(f24_out1) → c1
Now S is empty

(10) BOUNDS(O(1), O(1))