(0) Obligation:

Clauses:

overlap(Xs, Ys) :- ','(member(X, Xs), member(X, Ys)).
member(X, Y) :- ','(no(empty(Y)), head(Y, X)).
member(X, Y) :- ','(no(empty(Y)), ','(tail(Y, T), member(X, T))).
head([], X1).
head(.(H, X2), H).
tail([], []).
tail(.(X3, T), T).
empty([]).
no(X) :- ','(X, ','(!, failure(a))).
no(X4).
failure(b).

Query: overlap(g,g)

(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1, z0, z1) → f2_out1
f5_in(.(z0, z1), z2) → U2(f64_in(z0, z2, z1), .(z0, z1), z2)
U2(f64_out1, .(z0, z1), z2) → f5_out1
U2(f64_out4, .(z0, z1), z2) → f5_out1
f68_in(z0, .(z0, z1)) → f68_out1
f68_in(z0, .(z0, z1)) → U3(f68_in(z0, z1), z0, .(z0, z1))
f68_in(z0, .(z1, z2)) → U4(f68_in(z0, z2), z0, .(z1, z2))
U3(f68_out1, z0, .(z0, z1)) → f68_out1
U4(f68_out1, z0, .(z1, z2)) → f68_out1
f69_in(z0, z1, z2) → U5(f5_in(z1, z2), z0, z1, z2)
U5(f5_out1, z0, z1, z2) → f69_out3
f64_in(z0, z1, z2) → U6(f68_in(z0, z1), f69_in(z0, z2, z1), z0, z1, z2)
U6(f68_out1, z0, z1, z2, z3) → f64_out1
U6(z0, f69_out3, z1, z2, z3) → f64_out4
Tuples:

F2_IN(z0, z1) → c(U1'(f5_in(z0, z1), z0, z1), F5_IN(z0, z1))
F5_IN(.(z0, z1), z2) → c2(U2'(f64_in(z0, z2, z1), .(z0, z1), z2), F64_IN(z0, z2, z1))
F68_IN(z0, .(z0, z1)) → c6(U3'(f68_in(z0, z1), z0, .(z0, z1)), F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(U4'(f68_in(z0, z2), z0, .(z1, z2)), F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(U5'(f5_in(z1, z2), z0, z1, z2), F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(U6'(f68_in(z0, z1), f69_in(z0, z2, z1), z0, z1, z2), F68_IN(z0, z1), F69_IN(z0, z2, z1))
S tuples:

F2_IN(z0, z1) → c(U1'(f5_in(z0, z1), z0, z1), F5_IN(z0, z1))
F5_IN(.(z0, z1), z2) → c2(U2'(f64_in(z0, z2, z1), .(z0, z1), z2), F64_IN(z0, z2, z1))
F68_IN(z0, .(z0, z1)) → c6(U3'(f68_in(z0, z1), z0, .(z0, z1)), F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(U4'(f68_in(z0, z2), z0, .(z1, z2)), F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(U5'(f5_in(z1, z2), z0, z1, z2), F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(U6'(f68_in(z0, z1), f69_in(z0, z2, z1), z0, z1, z2), F68_IN(z0, z1), F69_IN(z0, z2, z1))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f5_in, U2, f68_in, U3, U4, f69_in, U5, f64_in, U6

Defined Pair Symbols:

F2_IN, F5_IN, F68_IN, F69_IN, F64_IN

Compound Symbols:

c, c2, c6, c7, c10, c12

(3) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1, z0, z1) → f2_out1
f5_in(.(z0, z1), z2) → U2(f64_in(z0, z2, z1), .(z0, z1), z2)
U2(f64_out1, .(z0, z1), z2) → f5_out1
U2(f64_out4, .(z0, z1), z2) → f5_out1
f68_in(z0, .(z0, z1)) → f68_out1
f68_in(z0, .(z0, z1)) → U3(f68_in(z0, z1), z0, .(z0, z1))
f68_in(z0, .(z1, z2)) → U4(f68_in(z0, z2), z0, .(z1, z2))
U3(f68_out1, z0, .(z0, z1)) → f68_out1
U4(f68_out1, z0, .(z1, z2)) → f68_out1
f69_in(z0, z1, z2) → U5(f5_in(z1, z2), z0, z1, z2)
U5(f5_out1, z0, z1, z2) → f69_out3
f64_in(z0, z1, z2) → U6(f68_in(z0, z1), f69_in(z0, z2, z1), z0, z1, z2)
U6(f68_out1, z0, z1, z2, z3) → f64_out1
U6(z0, f69_out3, z1, z2, z3) → f64_out4
Tuples:

F5_IN(.(z0, z1), z2) → c2(U2'(f64_in(z0, z2, z1), .(z0, z1), z2), F64_IN(z0, z2, z1))
F68_IN(z0, .(z0, z1)) → c6(U3'(f68_in(z0, z1), z0, .(z0, z1)), F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(U4'(f68_in(z0, z2), z0, .(z1, z2)), F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(U5'(f5_in(z1, z2), z0, z1, z2), F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(U6'(f68_in(z0, z1), f69_in(z0, z2, z1), z0, z1, z2), F68_IN(z0, z1), F69_IN(z0, z2, z1))
F2_IN(z0, z1) → c1(U1'(f5_in(z0, z1), z0, z1))
F2_IN(z0, z1) → c1(F5_IN(z0, z1))
S tuples:

F5_IN(.(z0, z1), z2) → c2(U2'(f64_in(z0, z2, z1), .(z0, z1), z2), F64_IN(z0, z2, z1))
F68_IN(z0, .(z0, z1)) → c6(U3'(f68_in(z0, z1), z0, .(z0, z1)), F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(U4'(f68_in(z0, z2), z0, .(z1, z2)), F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(U5'(f5_in(z1, z2), z0, z1, z2), F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(U6'(f68_in(z0, z1), f69_in(z0, z2, z1), z0, z1, z2), F68_IN(z0, z1), F69_IN(z0, z2, z1))
F2_IN(z0, z1) → c1(U1'(f5_in(z0, z1), z0, z1))
F2_IN(z0, z1) → c1(F5_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f5_in, U2, f68_in, U3, U4, f69_in, U5, f64_in, U6

Defined Pair Symbols:

F5_IN, F68_IN, F69_IN, F64_IN, F2_IN

Compound Symbols:

c2, c6, c7, c10, c12, c1

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 6 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1, z0, z1) → f2_out1
f5_in(.(z0, z1), z2) → U2(f64_in(z0, z2, z1), .(z0, z1), z2)
U2(f64_out1, .(z0, z1), z2) → f5_out1
U2(f64_out4, .(z0, z1), z2) → f5_out1
f68_in(z0, .(z0, z1)) → f68_out1
f68_in(z0, .(z0, z1)) → U3(f68_in(z0, z1), z0, .(z0, z1))
f68_in(z0, .(z1, z2)) → U4(f68_in(z0, z2), z0, .(z1, z2))
U3(f68_out1, z0, .(z0, z1)) → f68_out1
U4(f68_out1, z0, .(z1, z2)) → f68_out1
f69_in(z0, z1, z2) → U5(f5_in(z1, z2), z0, z1, z2)
U5(f5_out1, z0, z1, z2) → f69_out3
f64_in(z0, z1, z2) → U6(f68_in(z0, z1), f69_in(z0, z2, z1), z0, z1, z2)
U6(f68_out1, z0, z1, z2, z3) → f64_out1
U6(z0, f69_out3, z1, z2, z3) → f64_out4
Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))
F68_IN(z0, .(z0, z1)) → c6(F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(F68_IN(z0, z1), F69_IN(z0, z2, z1))
F2_IN(z0, z1) → c1
S tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))
F68_IN(z0, .(z0, z1)) → c6(F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(F68_IN(z0, z1), F69_IN(z0, z2, z1))
F2_IN(z0, z1) → c1
K tuples:none
Defined Rule Symbols:

f2_in, U1, f5_in, U2, f68_in, U3, U4, f69_in, U5, f64_in, U6

Defined Pair Symbols:

F2_IN, F5_IN, F68_IN, F69_IN, F64_IN

Compound Symbols:

c1, c2, c6, c7, c10, c12, c1

(7) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F2_IN(z0, z1) → c1

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1, z0, z1) → f2_out1
f5_in(.(z0, z1), z2) → U2(f64_in(z0, z2, z1), .(z0, z1), z2)
U2(f64_out1, .(z0, z1), z2) → f5_out1
U2(f64_out4, .(z0, z1), z2) → f5_out1
f68_in(z0, .(z0, z1)) → f68_out1
f68_in(z0, .(z0, z1)) → U3(f68_in(z0, z1), z0, .(z0, z1))
f68_in(z0, .(z1, z2)) → U4(f68_in(z0, z2), z0, .(z1, z2))
U3(f68_out1, z0, .(z0, z1)) → f68_out1
U4(f68_out1, z0, .(z1, z2)) → f68_out1
f69_in(z0, z1, z2) → U5(f5_in(z1, z2), z0, z1, z2)
U5(f5_out1, z0, z1, z2) → f69_out3
f64_in(z0, z1, z2) → U6(f68_in(z0, z1), f69_in(z0, z2, z1), z0, z1, z2)
U6(f68_out1, z0, z1, z2, z3) → f64_out1
U6(z0, f69_out3, z1, z2, z3) → f64_out4
Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))
F68_IN(z0, .(z0, z1)) → c6(F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(F68_IN(z0, z1), F69_IN(z0, z2, z1))
F2_IN(z0, z1) → c1
S tuples:

F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))
F68_IN(z0, .(z0, z1)) → c6(F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(F68_IN(z0, z1), F69_IN(z0, z2, z1))
K tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F2_IN(z0, z1) → c1
Defined Rule Symbols:

f2_in, U1, f5_in, U2, f68_in, U3, U4, f69_in, U5, f64_in, U6

Defined Pair Symbols:

F2_IN, F5_IN, F68_IN, F69_IN, F64_IN

Compound Symbols:

c1, c2, c6, c7, c10, c12, c1

(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))
F68_IN(z0, .(z0, z1)) → c6(F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(F68_IN(z0, z1), F69_IN(z0, z2, z1))
F2_IN(z0, z1) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [2] + x1 + x2   
POL(F2_IN(x1, x2)) = [3]x1 + [3]x2   
POL(F5_IN(x1, x2)) = [2]x1   
POL(F64_IN(x1, x2, x3)) = x1 + [2]x3   
POL(F68_IN(x1, x2)) = 0   
POL(F69_IN(x1, x2, x3)) = x1 + [2]x2   
POL(c1) = 0   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c12(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1, z0, z1) → f2_out1
f5_in(.(z0, z1), z2) → U2(f64_in(z0, z2, z1), .(z0, z1), z2)
U2(f64_out1, .(z0, z1), z2) → f5_out1
U2(f64_out4, .(z0, z1), z2) → f5_out1
f68_in(z0, .(z0, z1)) → f68_out1
f68_in(z0, .(z0, z1)) → U3(f68_in(z0, z1), z0, .(z0, z1))
f68_in(z0, .(z1, z2)) → U4(f68_in(z0, z2), z0, .(z1, z2))
U3(f68_out1, z0, .(z0, z1)) → f68_out1
U4(f68_out1, z0, .(z1, z2)) → f68_out1
f69_in(z0, z1, z2) → U5(f5_in(z1, z2), z0, z1, z2)
U5(f5_out1, z0, z1, z2) → f69_out3
f64_in(z0, z1, z2) → U6(f68_in(z0, z1), f69_in(z0, z2, z1), z0, z1, z2)
U6(f68_out1, z0, z1, z2, z3) → f64_out1
U6(z0, f69_out3, z1, z2, z3) → f64_out4
Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))
F68_IN(z0, .(z0, z1)) → c6(F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(F68_IN(z0, z1), F69_IN(z0, z2, z1))
F2_IN(z0, z1) → c1
S tuples:

F68_IN(z0, .(z0, z1)) → c6(F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(F68_IN(z0, z1), F69_IN(z0, z2, z1))
K tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F2_IN(z0, z1) → c1
F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))
Defined Rule Symbols:

f2_in, U1, f5_in, U2, f68_in, U3, U4, f69_in, U5, f64_in, U6

Defined Pair Symbols:

F2_IN, F5_IN, F68_IN, F69_IN, F64_IN

Compound Symbols:

c1, c2, c6, c7, c10, c12, c1

(11) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F64_IN(z0, z1, z2) → c12(F68_IN(z0, z1), F69_IN(z0, z2, z1))
F69_IN(z0, z1, z2) → c10(F5_IN(z1, z2))
F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1, z0, z1) → f2_out1
f5_in(.(z0, z1), z2) → U2(f64_in(z0, z2, z1), .(z0, z1), z2)
U2(f64_out1, .(z0, z1), z2) → f5_out1
U2(f64_out4, .(z0, z1), z2) → f5_out1
f68_in(z0, .(z0, z1)) → f68_out1
f68_in(z0, .(z0, z1)) → U3(f68_in(z0, z1), z0, .(z0, z1))
f68_in(z0, .(z1, z2)) → U4(f68_in(z0, z2), z0, .(z1, z2))
U3(f68_out1, z0, .(z0, z1)) → f68_out1
U4(f68_out1, z0, .(z1, z2)) → f68_out1
f69_in(z0, z1, z2) → U5(f5_in(z1, z2), z0, z1, z2)
U5(f5_out1, z0, z1, z2) → f69_out3
f64_in(z0, z1, z2) → U6(f68_in(z0, z1), f69_in(z0, z2, z1), z0, z1, z2)
U6(f68_out1, z0, z1, z2, z3) → f64_out1
U6(z0, f69_out3, z1, z2, z3) → f64_out4
Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))
F68_IN(z0, .(z0, z1)) → c6(F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(F68_IN(z0, z1), F69_IN(z0, z2, z1))
F2_IN(z0, z1) → c1
S tuples:

F68_IN(z0, .(z0, z1)) → c6(F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(F68_IN(z0, z2))
K tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F2_IN(z0, z1) → c1
F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))
F64_IN(z0, z1, z2) → c12(F68_IN(z0, z1), F69_IN(z0, z2, z1))
F69_IN(z0, z1, z2) → c10(F5_IN(z1, z2))
Defined Rule Symbols:

f2_in, U1, f5_in, U2, f68_in, U3, U4, f69_in, U5, f64_in, U6

Defined Pair Symbols:

F2_IN, F5_IN, F68_IN, F69_IN, F64_IN

Compound Symbols:

c1, c2, c6, c7, c10, c12, c1

(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F68_IN(z0, .(z0, z1)) → c6(F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(F68_IN(z0, z2))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))
F68_IN(z0, .(z0, z1)) → c6(F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(F68_IN(z0, z1), F69_IN(z0, z2, z1))
F2_IN(z0, z1) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1] + x2   
POL(F2_IN(x1, x2)) = x1·x2   
POL(F5_IN(x1, x2)) = x1·x2   
POL(F64_IN(x1, x2, x3)) = x2 + x2·x3   
POL(F68_IN(x1, x2)) = x2   
POL(F69_IN(x1, x2, x3)) = x2·x3   
POL(c1) = 0   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c12(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c6(x1)) = x1   
POL(c7(x1)) = x1   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1, z0, z1) → f2_out1
f5_in(.(z0, z1), z2) → U2(f64_in(z0, z2, z1), .(z0, z1), z2)
U2(f64_out1, .(z0, z1), z2) → f5_out1
U2(f64_out4, .(z0, z1), z2) → f5_out1
f68_in(z0, .(z0, z1)) → f68_out1
f68_in(z0, .(z0, z1)) → U3(f68_in(z0, z1), z0, .(z0, z1))
f68_in(z0, .(z1, z2)) → U4(f68_in(z0, z2), z0, .(z1, z2))
U3(f68_out1, z0, .(z0, z1)) → f68_out1
U4(f68_out1, z0, .(z1, z2)) → f68_out1
f69_in(z0, z1, z2) → U5(f5_in(z1, z2), z0, z1, z2)
U5(f5_out1, z0, z1, z2) → f69_out3
f64_in(z0, z1, z2) → U6(f68_in(z0, z1), f69_in(z0, z2, z1), z0, z1, z2)
U6(f68_out1, z0, z1, z2, z3) → f64_out1
U6(z0, f69_out3, z1, z2, z3) → f64_out4
Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))
F68_IN(z0, .(z0, z1)) → c6(F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(F68_IN(z0, z2))
F69_IN(z0, z1, z2) → c10(F5_IN(z1, z2))
F64_IN(z0, z1, z2) → c12(F68_IN(z0, z1), F69_IN(z0, z2, z1))
F2_IN(z0, z1) → c1
S tuples:none
K tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F2_IN(z0, z1) → c1
F5_IN(.(z0, z1), z2) → c2(F64_IN(z0, z2, z1))
F64_IN(z0, z1, z2) → c12(F68_IN(z0, z1), F69_IN(z0, z2, z1))
F69_IN(z0, z1, z2) → c10(F5_IN(z1, z2))
F68_IN(z0, .(z0, z1)) → c6(F68_IN(z0, z1))
F68_IN(z0, .(z1, z2)) → c7(F68_IN(z0, z2))
Defined Rule Symbols:

f2_in, U1, f5_in, U2, f68_in, U3, U4, f69_in, U5, f64_in, U6

Defined Pair Symbols:

F2_IN, F5_IN, F68_IN, F69_IN, F64_IN

Compound Symbols:

c1, c2, c6, c7, c10, c12, c1

(15) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(16) BOUNDS(O(1), O(1))

(17) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(18) Obligation:

Complex Complexity Dependency Tuples Problem
MAX

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F1_IN(z0, z1) → c(U1'(f6_in(z0, z1), z0, z1), F6_IN(z0, z1))
F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F6_IN(z0, z1) → c3(U5'(f11_in(z0), z0, z1), F11_IN(z0))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
U9'(f11_out1, z0, z1) → c6(U10'(f12_in(z1), z0, z1), F12_IN(z1))
S tuples:

F1_IN(z0, z1) → c(U1'(f6_in(z0, z1), z0, z1), F6_IN(z0, z1))
F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F6_IN, U2', F11_IN, U5', F12_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6


Complex Complexity Dependency Tuples Problem
MULTIPLY

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F1_IN(z0, z1) → c(U1'(f6_in(z0, z1), z0, z1), F6_IN(z0, z1))
F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F6_IN(z0, z1) → c3(U5'(f11_in(z0), z0, z1), F11_IN(z0))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
U9'(f11_out1, z0, z1) → c6(U10'(f12_in(z1), z0, z1), F12_IN(z1))
S tuples:

F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F6_IN(z0, z1) → c3(U5'(f11_in(z0), z0, z1), F11_IN(z0))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F6_IN, U2', F11_IN, U5', F12_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6


Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F1_IN(z0, z1) → c(U1'(f6_in(z0, z1), z0, z1), F6_IN(z0, z1))
F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F6_IN(z0, z1) → c3(U5'(f11_in(z0), z0, z1), F11_IN(z0))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
U9'(f11_out1, z0, z1) → c6(U10'(f12_in(z1), z0, z1), F12_IN(z1))
S tuples:

F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
U9'(f11_out1, z0, z1) → c6(U10'(f12_in(z1), z0, z1), F12_IN(z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F6_IN, U2', F11_IN, U5', F12_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6



(19) MaxProof (BOTH BOUNDS(ID, ID) transformation)

Took the maximum complexity of the problems.

(20) Complex Obligation (MAX)

(21) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F1_IN(z0, z1) → c(U1'(f6_in(z0, z1), z0, z1), F6_IN(z0, z1))
F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F6_IN(z0, z1) → c3(U5'(f11_in(z0), z0, z1), F11_IN(z0))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
U9'(f11_out1, z0, z1) → c6(U10'(f12_in(z1), z0, z1), F12_IN(z1))
S tuples:

F1_IN(z0, z1) → c(U1'(f6_in(z0, z1), z0, z1), F6_IN(z0, z1))
F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F6_IN, U2', F11_IN, U5', F12_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6

(22) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(23) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
F1_IN(z0, z1) → c7(U1'(f6_in(z0, z1), z0, z1))
F1_IN(z0, z1) → c7(F6_IN(z0, z1))
F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(F11_IN(z0))
U9'(f11_out1, z0, z1) → c7(U10'(f12_in(z1), z0, z1))
U9'(f11_out1, z0, z1) → c7(F12_IN(z1))
S tuples:

F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
F1_IN(z0, z1) → c7(U1'(f6_in(z0, z1), z0, z1))
F1_IN(z0, z1) → c7(F6_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F6_IN, U2', F11_IN, U5', F12_IN, F1_IN, U9'

Compound Symbols:

c2, c3, c1, c4, c2, c5, c7

(24) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 7 trailing tuple parts

(25) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
F1_IN(z0, z1) → c7(F6_IN(z0, z1))
F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(F11_IN(z0))
U9'(f11_out1, z0, z1) → c7(F12_IN(z1))
U2'(f11_out1, z0, z1) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1, z0, z1) → c4
F12_IN(.(z0, z1)) → c1(F12_IN(z1))
F12_IN(.(z0, z1)) → c2(F12_IN(z1))
F1_IN(z0, z1) → c7
U9'(f11_out1, z0, z1) → c7
S tuples:

F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
F1_IN(z0, z1) → c7(F6_IN(z0, z1))
U2'(f11_out1, z0, z1) → c3
F1_IN(z0, z1) → c7
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F6_IN, F1_IN, U9', U2', F11_IN, U5', F12_IN

Compound Symbols:

c2, c5, c7, c3, c1, c4, c7

(26) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F1_IN(z0, z1) → c7(F6_IN(z0, z1))
F1_IN(z0, z1) → c7
F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(F11_IN(z0))
U2'(f11_out1, z0, z1) → c3
U9'(f11_out1, z0, z1) → c7(F12_IN(z1))
U9'(f11_out1, z0, z1) → c7
U5'(f11_out1, z0, z1) → c4
Now S is empty

(27) BOUNDS(O(1), O(1))

(28) Obligation:

Complex Complexity Dependency Tuples Problem
MULTIPLY

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F1_IN(z0, z1) → c(U1'(f6_in(z0, z1), z0, z1), F6_IN(z0, z1))
F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F6_IN(z0, z1) → c3(U5'(f11_in(z0), z0, z1), F11_IN(z0))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
U9'(f11_out1, z0, z1) → c6(U10'(f12_in(z1), z0, z1), F12_IN(z1))
S tuples:

F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F6_IN(z0, z1) → c3(U5'(f11_in(z0), z0, z1), F11_IN(z0))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F6_IN, U2', F11_IN, U5', F12_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6


Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F1_IN(z0, z1) → c(U1'(f6_in(z0, z1), z0, z1), F6_IN(z0, z1))
F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F6_IN(z0, z1) → c3(U5'(f11_in(z0), z0, z1), F11_IN(z0))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
U9'(f11_out1, z0, z1) → c6(U10'(f12_in(z1), z0, z1), F12_IN(z1))
S tuples:

F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
U9'(f11_out1, z0, z1) → c6(U10'(f12_in(z1), z0, z1), F12_IN(z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F6_IN, U2', F11_IN, U5', F12_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6


(29) MultiplicationProof (BOTH BOUNDS(ID, ID) transformation)

Multiplied the complexity of the problems.

(30) Complex Obligation (MULT)

(31) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F1_IN(z0, z1) → c(U1'(f6_in(z0, z1), z0, z1), F6_IN(z0, z1))
F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F6_IN(z0, z1) → c3(U5'(f11_in(z0), z0, z1), F11_IN(z0))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
U9'(f11_out1, z0, z1) → c6(U10'(f12_in(z1), z0, z1), F12_IN(z1))
S tuples:

F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F6_IN(z0, z1) → c3(U5'(f11_in(z0), z0, z1), F11_IN(z0))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F6_IN, U2', F11_IN, U5', F12_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6

(32) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(33) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
F1_IN(z0, z1) → c7(U1'(f6_in(z0, z1), z0, z1))
F1_IN(z0, z1) → c7(F6_IN(z0, z1))
F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(F11_IN(z0))
U9'(f11_out1, z0, z1) → c7(U10'(f12_in(z1), z0, z1))
U9'(f11_out1, z0, z1) → c7(F12_IN(z1))
S tuples:

F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(F11_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F6_IN, U2', F11_IN, U5', F12_IN, F1_IN, U9'

Compound Symbols:

c2, c3, c1, c4, c2, c5, c7

(34) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 7 trailing tuple parts

(35) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
F1_IN(z0, z1) → c7(F6_IN(z0, z1))
F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(F11_IN(z0))
U9'(f11_out1, z0, z1) → c7(F12_IN(z1))
U2'(f11_out1, z0, z1) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1, z0, z1) → c4
F12_IN(.(z0, z1)) → c1(F12_IN(z1))
F12_IN(.(z0, z1)) → c2(F12_IN(z1))
F1_IN(z0, z1) → c7
U9'(f11_out1, z0, z1) → c7
S tuples:

F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(F11_IN(z0))
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1, z0, z1) → c4
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F6_IN, F1_IN, U9', U2', F11_IN, U5', F12_IN

Compound Symbols:

c2, c5, c7, c3, c1, c4, c7

(36) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F6_IN(z0, z1) → c7(F11_IN(z0))
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1, z0, z1) → c4
We considered the (Usable) Rules:

f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
And the Tuples:

F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
F1_IN(z0, z1) → c7(F6_IN(z0, z1))
F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(F11_IN(z0))
U9'(f11_out1, z0, z1) → c7(F12_IN(z1))
U2'(f11_out1, z0, z1) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1, z0, z1) → c4
F12_IN(.(z0, z1)) → c1(F12_IN(z1))
F12_IN(.(z0, z1)) → c2(F12_IN(z1))
F1_IN(z0, z1) → c7
U9'(f11_out1, z0, z1) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [2] + x2   
POL(F11_IN(x1)) = x1   
POL(F12_IN(x1)) = 0   
POL(F1_IN(x1, x2)) = [2] + [3]x1 + [3]x2   
POL(F6_IN(x1, x2)) = [1] + [2]x1 + [3]x2   
POL(U2'(x1, x2, x3)) = x2   
POL(U4(x1, x2)) = 0   
POL(U5'(x1, x2, x3)) = [1] + x2   
POL(U9'(x1, x2, x3)) = x2 + x3   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3) = 0   
POL(c4) = 0   
POL(c5(x1)) = x1   
POL(c7) = 0   
POL(c7(x1)) = x1   
POL(f11_in(x1)) = 0   
POL(f11_out1) = 0   

(37) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
F1_IN(z0, z1) → c7(F6_IN(z0, z1))
F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(F11_IN(z0))
U9'(f11_out1, z0, z1) → c7(F12_IN(z1))
U2'(f11_out1, z0, z1) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1, z0, z1) → c4
F12_IN(.(z0, z1)) → c1(F12_IN(z1))
F12_IN(.(z0, z1)) → c2(F12_IN(z1))
F1_IN(z0, z1) → c7
U9'(f11_out1, z0, z1) → c7
S tuples:

F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
K tuples:

F6_IN(z0, z1) → c7(F11_IN(z0))
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1, z0, z1) → c4
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F6_IN, F1_IN, U9', U2', F11_IN, U5', F12_IN

Compound Symbols:

c2, c5, c7, c3, c1, c4, c7

(38) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
We considered the (Usable) Rules:

f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
And the Tuples:

F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
F1_IN(z0, z1) → c7(F6_IN(z0, z1))
F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(F11_IN(z0))
U9'(f11_out1, z0, z1) → c7(F12_IN(z1))
U2'(f11_out1, z0, z1) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1, z0, z1) → c4
F12_IN(.(z0, z1)) → c1(F12_IN(z1))
F12_IN(.(z0, z1)) → c2(F12_IN(z1))
F1_IN(z0, z1) → c7
U9'(f11_out1, z0, z1) → c7
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = 0   
POL(F11_IN(x1)) = [1]   
POL(F12_IN(x1)) = 0   
POL(F1_IN(x1, x2)) = [2] + [3]x1 + [3]x2   
POL(F6_IN(x1, x2)) = [1] + [2]x1 + [2]x2   
POL(U2'(x1, x2, x3)) = 0   
POL(U4(x1, x2)) = 0   
POL(U5'(x1, x2, x3)) = [2]x3   
POL(U9'(x1, x2, x3)) = [2]x2 + [2]x3   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3) = 0   
POL(c4) = 0   
POL(c5(x1)) = x1   
POL(c7) = 0   
POL(c7(x1)) = x1   
POL(f11_in(x1)) = 0   
POL(f11_out1) = 0   

(39) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
F1_IN(z0, z1) → c7(F6_IN(z0, z1))
F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(F11_IN(z0))
U9'(f11_out1, z0, z1) → c7(F12_IN(z1))
U2'(f11_out1, z0, z1) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1, z0, z1) → c4
F12_IN(.(z0, z1)) → c1(F12_IN(z1))
F12_IN(.(z0, z1)) → c2(F12_IN(z1))
F1_IN(z0, z1) → c7
U9'(f11_out1, z0, z1) → c7
S tuples:none
K tuples:

F6_IN(z0, z1) → c7(F11_IN(z0))
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1, z0, z1) → c4
F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F6_IN, F1_IN, U9', U2', F11_IN, U5', F12_IN

Compound Symbols:

c2, c5, c7, c3, c1, c4, c7

(40) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(41) BOUNDS(O(1), O(1))

(42) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F1_IN(z0, z1) → c(U1'(f6_in(z0, z1), z0, z1), F6_IN(z0, z1))
F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
F6_IN(z0, z1) → c3(U5'(f11_in(z0), z0, z1), F11_IN(z0))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
U9'(f11_out1, z0, z1) → c6(U10'(f12_in(z1), z0, z1), F12_IN(z1))
S tuples:

F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
U9'(f11_out1, z0, z1) → c6(U10'(f12_in(z1), z0, z1), F12_IN(z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F1_IN, F6_IN, U2', F11_IN, U5', F12_IN, U9'

Compound Symbols:

c, c2, c3, c1, c3, c4, c2, c5, c6

(43) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(44) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
U2'(f11_out1, z0, z1) → c3(U3'(f12_in(z1), z0, z1))
F11_IN(.(z0, z1)) → c1(U4'(f11_in(z1), .(z0, z1)), F11_IN(z1))
U5'(f11_out1, z0, z1) → c4(U6'(f12_in(z1), z0, z1))
F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
F1_IN(z0, z1) → c7(U1'(f6_in(z0, z1), z0, z1))
F1_IN(z0, z1) → c7(F6_IN(z0, z1))
F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(F11_IN(z0))
U9'(f11_out1, z0, z1) → c7(U10'(f12_in(z1), z0, z1))
U9'(f11_out1, z0, z1) → c7(F12_IN(z1))
S tuples:

F12_IN(.(z0, z1)) → c1(U7'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F12_IN(.(z0, z1)) → c2(U8'(f12_in(z1), .(z0, z1)), F12_IN(z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
U9'(f11_out1, z0, z1) → c7(U10'(f12_in(z1), z0, z1))
U9'(f11_out1, z0, z1) → c7(F12_IN(z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F6_IN, U2', F11_IN, U5', F12_IN, F1_IN, U9'

Compound Symbols:

c2, c3, c1, c4, c2, c5, c7

(45) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 7 trailing tuple parts

(46) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f6_in(z0, z1) → U2(f11_in(z0), z0, z1)
f6_in(z0, z1) → U5(f11_in(z0), z0, z1)
f6_in(z0, z1) → U9(f11_in(z0), z0, z1)
U2(f11_out1, z0, z1) → U3(f12_in(z1), z0, z1)
U3(f12_out1, z0, z1) → f6_out1
f11_in(.(z0, z1)) → f11_out1
f11_in(.(z0, z1)) → U4(f11_in(z1), .(z0, z1))
U4(f11_out1, .(z0, z1)) → f11_out1
U5(f11_out1, z0, z1) → U6(f12_in(z1), z0, z1)
U6(f12_out1, z0, z1) → f6_out1
f12_in(.(z0, z1)) → f12_out1
f12_in(.(z0, z1)) → U7(f12_in(z1), .(z0, z1))
f12_in(.(z0, z1)) → U8(f12_in(z1), .(z0, z1))
U7(f12_out1, .(z0, z1)) → f12_out1
U8(f12_out1, .(z0, z1)) → f12_out1
U9(f11_out1, z0, z1) → U10(f12_in(z1), z0, z1)
U10(f12_out1, z0, z1) → f6_out1
Tuples:

F6_IN(z0, z1) → c2(U2'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
F1_IN(z0, z1) → c7(F6_IN(z0, z1))
F6_IN(z0, z1) → c7(U5'(f11_in(z0), z0, z1))
F6_IN(z0, z1) → c7(F11_IN(z0))
U9'(f11_out1, z0, z1) → c7(F12_IN(z1))
U2'(f11_out1, z0, z1) → c3
F11_IN(.(z0, z1)) → c1(F11_IN(z1))
U5'(f11_out1, z0, z1) → c4
F12_IN(.(z0, z1)) → c1(F12_IN(z1))
F12_IN(.(z0, z1)) → c2(F12_IN(z1))
F1_IN(z0, z1) → c7
U9'(f11_out1, z0, z1) → c7
S tuples:

F6_IN(z0, z1) → c5(U9'(f11_in(z0), z0, z1))
U9'(f11_out1, z0, z1) → c7(F12_IN(z1))
F12_IN(.(z0, z1)) → c1(F12_IN(z1))
F12_IN(.(z0, z1)) → c2(F12_IN(z1))
U9'(f11_out1, z0, z1) → c7
K tuples:none
Defined Rule Symbols:

f1_in, U1, f6_in, U2, U3, f11_in, U4, U5, U6, f12_in, U7, U8, U9, U10

Defined Pair Symbols:

F6_IN, F1_IN, U9', U2', F11_IN, U5', F12_IN

Compound Symbols:

c2, c5, c7, c3, c1, c4, c7