(0) Obligation:
Clauses:
goal :- ','(lte(X, s(s(s(s(0))))), even(X)).
lte(0, Y).
lte(X, s(Y)) :- ','(no(zero(X)), ','(p(X, P), lte(P, Y))).
even(0).
even(s(s(X))) :- even(X).
p(0, 0).
p(s(X), X).
zero(0).
no(X) :- ','(X, ','(!, failure(a))).
no(X1).
failure(b).
Query: goal()
(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in → U1(f7_in)
U1(f7_out1(z0)) → f2_out1
f16_in → f16_out1(0)
f16_in → U2(f16_in)
f16_in → U3(f16_in)
U2(f16_out1(z0)) → f16_out1(s(s(z0)))
U3(f16_out1(z0)) → f16_out1(s(s(z0)))
f15_in → f15_out1
f7_in → U4(f15_in)
U4(f15_out1) → U5(f16_in)
U5(f16_out1(z0)) → f7_out1(z0)
Tuples:
F2_IN → c(U1'(f7_in), F7_IN)
F16_IN → c3(U2'(f16_in), F16_IN)
F16_IN → c4(U3'(f16_in), F16_IN)
F7_IN → c8(U4'(f15_in), F15_IN)
U4'(f15_out1) → c9(U5'(f16_in), F16_IN)
S tuples:
F2_IN → c(U1'(f7_in), F7_IN)
F16_IN → c3(U2'(f16_in), F16_IN)
F16_IN → c4(U3'(f16_in), F16_IN)
F7_IN → c8(U4'(f15_in), F15_IN)
U4'(f15_out1) → c9(U5'(f16_in), F16_IN)
K tuples:none
Defined Rule Symbols:
f2_in, U1, f16_in, U2, U3, f15_in, f7_in, U4, U5
Defined Pair Symbols:
F2_IN, F16_IN, F7_IN, U4'
Compound Symbols:
c, c3, c4, c8, c9
(3) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in → U1(f7_in)
U1(f7_out1(z0)) → f2_out1
f16_in → f16_out1(0)
f16_in → U2(f16_in)
f16_in → U3(f16_in)
U2(f16_out1(z0)) → f16_out1(s(s(z0)))
U3(f16_out1(z0)) → f16_out1(s(s(z0)))
f15_in → f15_out1
f7_in → U4(f15_in)
U4(f15_out1) → U5(f16_in)
U5(f16_out1(z0)) → f7_out1(z0)
Tuples:
F16_IN → c3(U2'(f16_in), F16_IN)
F16_IN → c4(U3'(f16_in), F16_IN)
F2_IN → c1(U1'(f7_in))
F2_IN → c1(F7_IN)
F7_IN → c1(U4'(f15_in))
F7_IN → c1(F15_IN)
U4'(f15_out1) → c1(U5'(f16_in))
U4'(f15_out1) → c1(F16_IN)
S tuples:
F16_IN → c3(U2'(f16_in), F16_IN)
F16_IN → c4(U3'(f16_in), F16_IN)
F2_IN → c1(U1'(f7_in))
F2_IN → c1(F7_IN)
F7_IN → c1(U4'(f15_in))
F7_IN → c1(F15_IN)
U4'(f15_out1) → c1(U5'(f16_in))
U4'(f15_out1) → c1(F16_IN)
K tuples:none
Defined Rule Symbols:
f2_in, U1, f16_in, U2, U3, f15_in, f7_in, U4, U5
Defined Pair Symbols:
F16_IN, F2_IN, F7_IN, U4'
Compound Symbols:
c3, c4, c1
(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 5 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in → U1(f7_in)
U1(f7_out1(z0)) → f2_out1
f16_in → f16_out1(0)
f16_in → U2(f16_in)
f16_in → U3(f16_in)
U2(f16_out1(z0)) → f16_out1(s(s(z0)))
U3(f16_out1(z0)) → f16_out1(s(s(z0)))
f15_in → f15_out1
f7_in → U4(f15_in)
U4(f15_out1) → U5(f16_in)
U5(f16_out1(z0)) → f7_out1(z0)
Tuples:
F2_IN → c1(F7_IN)
F7_IN → c1(U4'(f15_in))
U4'(f15_out1) → c1(F16_IN)
F16_IN → c3(F16_IN)
F16_IN → c4(F16_IN)
F2_IN → c1
F7_IN → c1
U4'(f15_out1) → c1
S tuples:
F2_IN → c1(F7_IN)
F7_IN → c1(U4'(f15_in))
U4'(f15_out1) → c1(F16_IN)
F16_IN → c3(F16_IN)
F16_IN → c4(F16_IN)
F2_IN → c1
F7_IN → c1
U4'(f15_out1) → c1
K tuples:none
Defined Rule Symbols:
f2_in, U1, f16_in, U2, U3, f15_in, f7_in, U4, U5
Defined Pair Symbols:
F2_IN, F7_IN, U4', F16_IN
Compound Symbols:
c1, c3, c4, c1
(7) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F2_IN → c1(F7_IN)
F7_IN → c1(U4'(f15_in))
U4'(f15_out1) → c1(F16_IN)
F2_IN → c1
F7_IN → c1
U4'(f15_out1) → c1
F7_IN → c1(U4'(f15_in))
F7_IN → c1
U4'(f15_out1) → c1(F16_IN)
U4'(f15_out1) → c1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in → U1(f7_in)
U1(f7_out1(z0)) → f2_out1
f16_in → f16_out1(0)
f16_in → U2(f16_in)
f16_in → U3(f16_in)
U2(f16_out1(z0)) → f16_out1(s(s(z0)))
U3(f16_out1(z0)) → f16_out1(s(s(z0)))
f15_in → f15_out1
f7_in → U4(f15_in)
U4(f15_out1) → U5(f16_in)
U5(f16_out1(z0)) → f7_out1(z0)
Tuples:
F2_IN → c1(F7_IN)
F7_IN → c1(U4'(f15_in))
U4'(f15_out1) → c1(F16_IN)
F16_IN → c3(F16_IN)
F16_IN → c4(F16_IN)
F2_IN → c1
F7_IN → c1
U4'(f15_out1) → c1
S tuples:
F16_IN → c3(F16_IN)
F16_IN → c4(F16_IN)
K tuples:
F2_IN → c1(F7_IN)
F7_IN → c1(U4'(f15_in))
U4'(f15_out1) → c1(F16_IN)
F2_IN → c1
F7_IN → c1
U4'(f15_out1) → c1
Defined Rule Symbols:
f2_in, U1, f16_in, U2, U3, f15_in, f7_in, U4, U5
Defined Pair Symbols:
F2_IN, F7_IN, U4', F16_IN
Compound Symbols:
c1, c3, c4, c1
(9) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in → U1(f8_in)
U1(f8_out1) → f1_out1
U1(f8_out2(z0)) → f1_out1
f9_in → f9_out1
f8_in → U2(f9_in, f10_in)
U2(f9_out1, z0) → f8_out1
U2(z0, f10_out1(z0)) → f8_out2(z0)
Tuples:
F1_IN → c(U1'(f8_in), F8_IN)
F8_IN → c4(U2'(f9_in, f10_in), F9_IN)
S tuples:
F1_IN → c(U1'(f8_in), F8_IN)
F8_IN → c4(U2'(f9_in, f10_in), F9_IN)
K tuples:none
Defined Rule Symbols:
f1_in, U1, f9_in, f8_in, U2
Defined Pair Symbols:
F1_IN, F8_IN
Compound Symbols:
c, c4
(11) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in → U1(f8_in)
U1(f8_out1) → f1_out1
U1(f8_out2(z0)) → f1_out1
f9_in → f9_out1
f8_in → U2(f9_in, f10_in)
U2(f9_out1, z0) → f8_out1
U2(z0, f10_out1(z0)) → f8_out2(z0)
Tuples:
F1_IN → c1(U1'(f8_in))
F1_IN → c1(F8_IN)
F8_IN → c1(U2'(f9_in, f10_in))
F8_IN → c1(F9_IN)
S tuples:
F1_IN → c1(U1'(f8_in))
F1_IN → c1(F8_IN)
F8_IN → c1(U2'(f9_in, f10_in))
F8_IN → c1(F9_IN)
K tuples:none
Defined Rule Symbols:
f1_in, U1, f9_in, f8_in, U2
Defined Pair Symbols:
F1_IN, F8_IN
Compound Symbols:
c1
(13) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in → U1(f8_in)
U1(f8_out1) → f1_out1
U1(f8_out2(z0)) → f1_out1
f9_in → f9_out1
f8_in → U2(f9_in, f10_in)
U2(f9_out1, z0) → f8_out1
U2(z0, f10_out1(z0)) → f8_out2(z0)
Tuples:
F1_IN → c1(F8_IN)
F1_IN → c1
F8_IN → c1
S tuples:
F1_IN → c1(F8_IN)
F1_IN → c1
F8_IN → c1
K tuples:none
Defined Rule Symbols:
f1_in, U1, f9_in, f8_in, U2
Defined Pair Symbols:
F1_IN, F8_IN
Compound Symbols:
c1, c1
(15) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F1_IN → c1(F8_IN)
F1_IN → c1
F8_IN → c1
F8_IN → c1
F8_IN → c1
F8_IN → c1
Now S is empty
(16) BOUNDS(O(1), O(1))