(0) Obligation:

Clauses:

less(0, s(X2)).
less(X, Y) :- ','(no(zero(X)), ','(p(X, X1), ','(p(Y, Y1), less(X1, Y1)))).
p(0, 0).
p(s(X), X).
zero(0).
no(X) :- ','(X, ','(!, failure(a))).
no(X3).
failure(b).

Query: less(g,a)

(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1
f2_in(s(z0)) → U1(f67_in(z0), s(z0))
f2_in(s(z0)) → U2(f2_in(z0), s(z0))
U1(f67_out1, s(z0)) → f2_out1
U1(f67_out2, s(z0)) → f2_out1
U2(f2_out1, s(z0)) → f2_out1
f69_in(s(z0)) → U3(f116_in(z0), s(z0))
U3(f116_out1, s(z0)) → f69_out1
U3(f116_out2(z0), s(z1)) → f69_out1
f71_in(z0) → U4(f2_in(z0), z0)
U4(f2_out1, z0) → f71_out1
f67_in(z0) → U5(f69_in(z0), f71_in(z0), z0)
U5(f69_out1, z0, z1) → f67_out1
U5(z0, f71_out1, z1) → f67_out2
f116_in(z0) → U6(f69_in(z0), f118_in(z0), z0)
U6(f69_out1, z0, z1) → f116_out1
U6(z0, f118_out1(z1), z2) → f116_out2(z1)
Tuples:

F2_IN(s(z0)) → c1(U1'(f67_in(z0), s(z0)), F67_IN(z0))
F2_IN(s(z0)) → c2(U2'(f2_in(z0), s(z0)), F2_IN(z0))
F69_IN(s(z0)) → c6(U3'(f116_in(z0), s(z0)), F116_IN(z0))
F71_IN(z0) → c9(U4'(f2_in(z0), z0), F2_IN(z0))
F67_IN(z0) → c11(U5'(f69_in(z0), f71_in(z0), z0), F69_IN(z0), F71_IN(z0))
F116_IN(z0) → c14(U6'(f69_in(z0), f118_in(z0), z0), F69_IN(z0))
S tuples:

F2_IN(s(z0)) → c1(U1'(f67_in(z0), s(z0)), F67_IN(z0))
F2_IN(s(z0)) → c2(U2'(f2_in(z0), s(z0)), F2_IN(z0))
F69_IN(s(z0)) → c6(U3'(f116_in(z0), s(z0)), F116_IN(z0))
F71_IN(z0) → c9(U4'(f2_in(z0), z0), F2_IN(z0))
F67_IN(z0) → c11(U5'(f69_in(z0), f71_in(z0), z0), F69_IN(z0), F71_IN(z0))
F116_IN(z0) → c14(U6'(f69_in(z0), f118_in(z0), z0), F69_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2, f69_in, U3, f71_in, U4, f67_in, U5, f116_in, U6

Defined Pair Symbols:

F2_IN, F69_IN, F71_IN, F67_IN, F116_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(3) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 6 trailing tuple parts

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1
f2_in(s(z0)) → U1(f67_in(z0), s(z0))
f2_in(s(z0)) → U2(f2_in(z0), s(z0))
U1(f67_out1, s(z0)) → f2_out1
U1(f67_out2, s(z0)) → f2_out1
U2(f2_out1, s(z0)) → f2_out1
f69_in(s(z0)) → U3(f116_in(z0), s(z0))
U3(f116_out1, s(z0)) → f69_out1
U3(f116_out2(z0), s(z1)) → f69_out1
f71_in(z0) → U4(f2_in(z0), z0)
U4(f2_out1, z0) → f71_out1
f67_in(z0) → U5(f69_in(z0), f71_in(z0), z0)
U5(f69_out1, z0, z1) → f67_out1
U5(z0, f71_out1, z1) → f67_out2
f116_in(z0) → U6(f69_in(z0), f118_in(z0), z0)
U6(f69_out1, z0, z1) → f116_out1
U6(z0, f118_out1(z1), z2) → f116_out2(z1)
Tuples:

F2_IN(s(z0)) → c1(F67_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F69_IN(s(z0)) → c6(F116_IN(z0))
F71_IN(z0) → c9(F2_IN(z0))
F67_IN(z0) → c11(F69_IN(z0), F71_IN(z0))
F116_IN(z0) → c14(F69_IN(z0))
S tuples:

F2_IN(s(z0)) → c1(F67_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F69_IN(s(z0)) → c6(F116_IN(z0))
F71_IN(z0) → c9(F2_IN(z0))
F67_IN(z0) → c11(F69_IN(z0), F71_IN(z0))
F116_IN(z0) → c14(F69_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2, f69_in, U3, f71_in, U4, f67_in, U5, f116_in, U6

Defined Pair Symbols:

F2_IN, F69_IN, F71_IN, F67_IN, F116_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(s(z0)) → c1(F67_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(s(z0)) → c1(F67_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F69_IN(s(z0)) → c6(F116_IN(z0))
F71_IN(z0) → c9(F2_IN(z0))
F67_IN(z0) → c11(F69_IN(z0), F71_IN(z0))
F116_IN(z0) → c14(F69_IN(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F116_IN(x1)) = 0   
POL(F2_IN(x1)) = x1   
POL(F67_IN(x1)) = x1   
POL(F69_IN(x1)) = 0   
POL(F71_IN(x1)) = x1   
POL(c1(x1)) = x1   
POL(c11(x1, x2)) = x1 + x2   
POL(c14(x1)) = x1   
POL(c2(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(s(x1)) = [1] + x1   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1
f2_in(s(z0)) → U1(f67_in(z0), s(z0))
f2_in(s(z0)) → U2(f2_in(z0), s(z0))
U1(f67_out1, s(z0)) → f2_out1
U1(f67_out2, s(z0)) → f2_out1
U2(f2_out1, s(z0)) → f2_out1
f69_in(s(z0)) → U3(f116_in(z0), s(z0))
U3(f116_out1, s(z0)) → f69_out1
U3(f116_out2(z0), s(z1)) → f69_out1
f71_in(z0) → U4(f2_in(z0), z0)
U4(f2_out1, z0) → f71_out1
f67_in(z0) → U5(f69_in(z0), f71_in(z0), z0)
U5(f69_out1, z0, z1) → f67_out1
U5(z0, f71_out1, z1) → f67_out2
f116_in(z0) → U6(f69_in(z0), f118_in(z0), z0)
U6(f69_out1, z0, z1) → f116_out1
U6(z0, f118_out1(z1), z2) → f116_out2(z1)
Tuples:

F2_IN(s(z0)) → c1(F67_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F69_IN(s(z0)) → c6(F116_IN(z0))
F71_IN(z0) → c9(F2_IN(z0))
F67_IN(z0) → c11(F69_IN(z0), F71_IN(z0))
F116_IN(z0) → c14(F69_IN(z0))
S tuples:

F69_IN(s(z0)) → c6(F116_IN(z0))
F71_IN(z0) → c9(F2_IN(z0))
F67_IN(z0) → c11(F69_IN(z0), F71_IN(z0))
F116_IN(z0) → c14(F69_IN(z0))
K tuples:

F2_IN(s(z0)) → c1(F67_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
Defined Rule Symbols:

f2_in, U1, U2, f69_in, U3, f71_in, U4, f67_in, U5, f116_in, U6

Defined Pair Symbols:

F2_IN, F69_IN, F71_IN, F67_IN, F116_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(7) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F67_IN(z0) → c11(F69_IN(z0), F71_IN(z0))
F71_IN(z0) → c9(F2_IN(z0))
F2_IN(s(z0)) → c1(F67_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1
f2_in(s(z0)) → U1(f67_in(z0), s(z0))
f2_in(s(z0)) → U2(f2_in(z0), s(z0))
U1(f67_out1, s(z0)) → f2_out1
U1(f67_out2, s(z0)) → f2_out1
U2(f2_out1, s(z0)) → f2_out1
f69_in(s(z0)) → U3(f116_in(z0), s(z0))
U3(f116_out1, s(z0)) → f69_out1
U3(f116_out2(z0), s(z1)) → f69_out1
f71_in(z0) → U4(f2_in(z0), z0)
U4(f2_out1, z0) → f71_out1
f67_in(z0) → U5(f69_in(z0), f71_in(z0), z0)
U5(f69_out1, z0, z1) → f67_out1
U5(z0, f71_out1, z1) → f67_out2
f116_in(z0) → U6(f69_in(z0), f118_in(z0), z0)
U6(f69_out1, z0, z1) → f116_out1
U6(z0, f118_out1(z1), z2) → f116_out2(z1)
Tuples:

F2_IN(s(z0)) → c1(F67_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F69_IN(s(z0)) → c6(F116_IN(z0))
F71_IN(z0) → c9(F2_IN(z0))
F67_IN(z0) → c11(F69_IN(z0), F71_IN(z0))
F116_IN(z0) → c14(F69_IN(z0))
S tuples:

F69_IN(s(z0)) → c6(F116_IN(z0))
F116_IN(z0) → c14(F69_IN(z0))
K tuples:

F2_IN(s(z0)) → c1(F67_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F67_IN(z0) → c11(F69_IN(z0), F71_IN(z0))
F71_IN(z0) → c9(F2_IN(z0))
Defined Rule Symbols:

f2_in, U1, U2, f69_in, U3, f71_in, U4, f67_in, U5, f116_in, U6

Defined Pair Symbols:

F2_IN, F69_IN, F71_IN, F67_IN, F116_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F69_IN(s(z0)) → c6(F116_IN(z0))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(s(z0)) → c1(F67_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F69_IN(s(z0)) → c6(F116_IN(z0))
F71_IN(z0) → c9(F2_IN(z0))
F67_IN(z0) → c11(F69_IN(z0), F71_IN(z0))
F116_IN(z0) → c14(F69_IN(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F116_IN(x1)) = x1   
POL(F2_IN(x1)) = x12   
POL(F67_IN(x1)) = x1 + x12   
POL(F69_IN(x1)) = x1   
POL(F71_IN(x1)) = x12   
POL(c1(x1)) = x1   
POL(c11(x1, x2)) = x1 + x2   
POL(c14(x1)) = x1   
POL(c2(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(s(x1)) = [1] + x1   

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1
f2_in(s(z0)) → U1(f67_in(z0), s(z0))
f2_in(s(z0)) → U2(f2_in(z0), s(z0))
U1(f67_out1, s(z0)) → f2_out1
U1(f67_out2, s(z0)) → f2_out1
U2(f2_out1, s(z0)) → f2_out1
f69_in(s(z0)) → U3(f116_in(z0), s(z0))
U3(f116_out1, s(z0)) → f69_out1
U3(f116_out2(z0), s(z1)) → f69_out1
f71_in(z0) → U4(f2_in(z0), z0)
U4(f2_out1, z0) → f71_out1
f67_in(z0) → U5(f69_in(z0), f71_in(z0), z0)
U5(f69_out1, z0, z1) → f67_out1
U5(z0, f71_out1, z1) → f67_out2
f116_in(z0) → U6(f69_in(z0), f118_in(z0), z0)
U6(f69_out1, z0, z1) → f116_out1
U6(z0, f118_out1(z1), z2) → f116_out2(z1)
Tuples:

F2_IN(s(z0)) → c1(F67_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F69_IN(s(z0)) → c6(F116_IN(z0))
F71_IN(z0) → c9(F2_IN(z0))
F67_IN(z0) → c11(F69_IN(z0), F71_IN(z0))
F116_IN(z0) → c14(F69_IN(z0))
S tuples:

F116_IN(z0) → c14(F69_IN(z0))
K tuples:

F2_IN(s(z0)) → c1(F67_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F67_IN(z0) → c11(F69_IN(z0), F71_IN(z0))
F71_IN(z0) → c9(F2_IN(z0))
F69_IN(s(z0)) → c6(F116_IN(z0))
Defined Rule Symbols:

f2_in, U1, U2, f69_in, U3, f71_in, U4, f67_in, U5, f116_in, U6

Defined Pair Symbols:

F2_IN, F69_IN, F71_IN, F67_IN, F116_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(11) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F116_IN(z0) → c14(F69_IN(z0))
F69_IN(s(z0)) → c6(F116_IN(z0))
Now S is empty

(12) BOUNDS(O(1), O(1))

(13) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1
f1_in(s(z0)) → U1(f62_in(z0), s(z0))
f1_in(s(z0)) → U2(f1_in(z0), s(z0))
U1(f62_out1, s(z0)) → f1_out1
U1(f62_out2, s(z0)) → f1_out1
U2(f1_out1, s(z0)) → f1_out1
f70_in(s(z0)) → U3(f112_in(z0), s(z0))
U3(f112_out1, s(z0)) → f70_out1
U3(f112_out2(z0), s(z1)) → f70_out1
f72_in(z0) → U4(f1_in(z0), z0)
U4(f1_out1, z0) → f72_out1
f62_in(z0) → U5(f70_in(z0), f72_in(z0), z0)
U5(f70_out1, z0, z1) → f62_out1
U5(z0, f72_out1, z1) → f62_out2
f112_in(z0) → U6(f70_in(z0), f115_in(z0), z0)
U6(f70_out1, z0, z1) → f112_out1
U6(z0, f115_out1(z1), z2) → f112_out2(z1)
Tuples:

F1_IN(s(z0)) → c1(U1'(f62_in(z0), s(z0)), F62_IN(z0))
F1_IN(s(z0)) → c2(U2'(f1_in(z0), s(z0)), F1_IN(z0))
F70_IN(s(z0)) → c6(U3'(f112_in(z0), s(z0)), F112_IN(z0))
F72_IN(z0) → c9(U4'(f1_in(z0), z0), F1_IN(z0))
F62_IN(z0) → c11(U5'(f70_in(z0), f72_in(z0), z0), F70_IN(z0), F72_IN(z0))
F112_IN(z0) → c14(U6'(f70_in(z0), f115_in(z0), z0), F70_IN(z0))
S tuples:

F1_IN(s(z0)) → c1(U1'(f62_in(z0), s(z0)), F62_IN(z0))
F1_IN(s(z0)) → c2(U2'(f1_in(z0), s(z0)), F1_IN(z0))
F70_IN(s(z0)) → c6(U3'(f112_in(z0), s(z0)), F112_IN(z0))
F72_IN(z0) → c9(U4'(f1_in(z0), z0), F1_IN(z0))
F62_IN(z0) → c11(U5'(f70_in(z0), f72_in(z0), z0), F70_IN(z0), F72_IN(z0))
F112_IN(z0) → c14(U6'(f70_in(z0), f115_in(z0), z0), F70_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f70_in, U3, f72_in, U4, f62_in, U5, f112_in, U6

Defined Pair Symbols:

F1_IN, F70_IN, F72_IN, F62_IN, F112_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(15) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 6 trailing tuple parts

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1
f1_in(s(z0)) → U1(f62_in(z0), s(z0))
f1_in(s(z0)) → U2(f1_in(z0), s(z0))
U1(f62_out1, s(z0)) → f1_out1
U1(f62_out2, s(z0)) → f1_out1
U2(f1_out1, s(z0)) → f1_out1
f70_in(s(z0)) → U3(f112_in(z0), s(z0))
U3(f112_out1, s(z0)) → f70_out1
U3(f112_out2(z0), s(z1)) → f70_out1
f72_in(z0) → U4(f1_in(z0), z0)
U4(f1_out1, z0) → f72_out1
f62_in(z0) → U5(f70_in(z0), f72_in(z0), z0)
U5(f70_out1, z0, z1) → f62_out1
U5(z0, f72_out1, z1) → f62_out2
f112_in(z0) → U6(f70_in(z0), f115_in(z0), z0)
U6(f70_out1, z0, z1) → f112_out1
U6(z0, f115_out1(z1), z2) → f112_out2(z1)
Tuples:

F1_IN(s(z0)) → c1(F62_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F70_IN(s(z0)) → c6(F112_IN(z0))
F72_IN(z0) → c9(F1_IN(z0))
F62_IN(z0) → c11(F70_IN(z0), F72_IN(z0))
F112_IN(z0) → c14(F70_IN(z0))
S tuples:

F1_IN(s(z0)) → c1(F62_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F70_IN(s(z0)) → c6(F112_IN(z0))
F72_IN(z0) → c9(F1_IN(z0))
F62_IN(z0) → c11(F70_IN(z0), F72_IN(z0))
F112_IN(z0) → c14(F70_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f70_in, U3, f72_in, U4, f62_in, U5, f112_in, U6

Defined Pair Symbols:

F1_IN, F70_IN, F72_IN, F62_IN, F112_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F1_IN(s(z0)) → c1(F62_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(s(z0)) → c1(F62_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F70_IN(s(z0)) → c6(F112_IN(z0))
F72_IN(z0) → c9(F1_IN(z0))
F62_IN(z0) → c11(F70_IN(z0), F72_IN(z0))
F112_IN(z0) → c14(F70_IN(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F112_IN(x1)) = 0   
POL(F1_IN(x1)) = x1   
POL(F62_IN(x1)) = x1   
POL(F70_IN(x1)) = 0   
POL(F72_IN(x1)) = x1   
POL(c1(x1)) = x1   
POL(c11(x1, x2)) = x1 + x2   
POL(c14(x1)) = x1   
POL(c2(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(s(x1)) = [1] + x1   

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1
f1_in(s(z0)) → U1(f62_in(z0), s(z0))
f1_in(s(z0)) → U2(f1_in(z0), s(z0))
U1(f62_out1, s(z0)) → f1_out1
U1(f62_out2, s(z0)) → f1_out1
U2(f1_out1, s(z0)) → f1_out1
f70_in(s(z0)) → U3(f112_in(z0), s(z0))
U3(f112_out1, s(z0)) → f70_out1
U3(f112_out2(z0), s(z1)) → f70_out1
f72_in(z0) → U4(f1_in(z0), z0)
U4(f1_out1, z0) → f72_out1
f62_in(z0) → U5(f70_in(z0), f72_in(z0), z0)
U5(f70_out1, z0, z1) → f62_out1
U5(z0, f72_out1, z1) → f62_out2
f112_in(z0) → U6(f70_in(z0), f115_in(z0), z0)
U6(f70_out1, z0, z1) → f112_out1
U6(z0, f115_out1(z1), z2) → f112_out2(z1)
Tuples:

F1_IN(s(z0)) → c1(F62_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F70_IN(s(z0)) → c6(F112_IN(z0))
F72_IN(z0) → c9(F1_IN(z0))
F62_IN(z0) → c11(F70_IN(z0), F72_IN(z0))
F112_IN(z0) → c14(F70_IN(z0))
S tuples:

F70_IN(s(z0)) → c6(F112_IN(z0))
F72_IN(z0) → c9(F1_IN(z0))
F62_IN(z0) → c11(F70_IN(z0), F72_IN(z0))
F112_IN(z0) → c14(F70_IN(z0))
K tuples:

F1_IN(s(z0)) → c1(F62_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
Defined Rule Symbols:

f1_in, U1, U2, f70_in, U3, f72_in, U4, f62_in, U5, f112_in, U6

Defined Pair Symbols:

F1_IN, F70_IN, F72_IN, F62_IN, F112_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(19) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F62_IN(z0) → c11(F70_IN(z0), F72_IN(z0))
F72_IN(z0) → c9(F1_IN(z0))
F1_IN(s(z0)) → c1(F62_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1
f1_in(s(z0)) → U1(f62_in(z0), s(z0))
f1_in(s(z0)) → U2(f1_in(z0), s(z0))
U1(f62_out1, s(z0)) → f1_out1
U1(f62_out2, s(z0)) → f1_out1
U2(f1_out1, s(z0)) → f1_out1
f70_in(s(z0)) → U3(f112_in(z0), s(z0))
U3(f112_out1, s(z0)) → f70_out1
U3(f112_out2(z0), s(z1)) → f70_out1
f72_in(z0) → U4(f1_in(z0), z0)
U4(f1_out1, z0) → f72_out1
f62_in(z0) → U5(f70_in(z0), f72_in(z0), z0)
U5(f70_out1, z0, z1) → f62_out1
U5(z0, f72_out1, z1) → f62_out2
f112_in(z0) → U6(f70_in(z0), f115_in(z0), z0)
U6(f70_out1, z0, z1) → f112_out1
U6(z0, f115_out1(z1), z2) → f112_out2(z1)
Tuples:

F1_IN(s(z0)) → c1(F62_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F70_IN(s(z0)) → c6(F112_IN(z0))
F72_IN(z0) → c9(F1_IN(z0))
F62_IN(z0) → c11(F70_IN(z0), F72_IN(z0))
F112_IN(z0) → c14(F70_IN(z0))
S tuples:

F70_IN(s(z0)) → c6(F112_IN(z0))
F112_IN(z0) → c14(F70_IN(z0))
K tuples:

F1_IN(s(z0)) → c1(F62_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F62_IN(z0) → c11(F70_IN(z0), F72_IN(z0))
F72_IN(z0) → c9(F1_IN(z0))
Defined Rule Symbols:

f1_in, U1, U2, f70_in, U3, f72_in, U4, f62_in, U5, f112_in, U6

Defined Pair Symbols:

F1_IN, F70_IN, F72_IN, F62_IN, F112_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F70_IN(s(z0)) → c6(F112_IN(z0))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(s(z0)) → c1(F62_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F70_IN(s(z0)) → c6(F112_IN(z0))
F72_IN(z0) → c9(F1_IN(z0))
F62_IN(z0) → c11(F70_IN(z0), F72_IN(z0))
F112_IN(z0) → c14(F70_IN(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F112_IN(x1)) = x1   
POL(F1_IN(x1)) = x12   
POL(F62_IN(x1)) = x1 + x12   
POL(F70_IN(x1)) = x1   
POL(F72_IN(x1)) = x12   
POL(c1(x1)) = x1   
POL(c11(x1, x2)) = x1 + x2   
POL(c14(x1)) = x1   
POL(c2(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(s(x1)) = [1] + x1   

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1
f1_in(s(z0)) → U1(f62_in(z0), s(z0))
f1_in(s(z0)) → U2(f1_in(z0), s(z0))
U1(f62_out1, s(z0)) → f1_out1
U1(f62_out2, s(z0)) → f1_out1
U2(f1_out1, s(z0)) → f1_out1
f70_in(s(z0)) → U3(f112_in(z0), s(z0))
U3(f112_out1, s(z0)) → f70_out1
U3(f112_out2(z0), s(z1)) → f70_out1
f72_in(z0) → U4(f1_in(z0), z0)
U4(f1_out1, z0) → f72_out1
f62_in(z0) → U5(f70_in(z0), f72_in(z0), z0)
U5(f70_out1, z0, z1) → f62_out1
U5(z0, f72_out1, z1) → f62_out2
f112_in(z0) → U6(f70_in(z0), f115_in(z0), z0)
U6(f70_out1, z0, z1) → f112_out1
U6(z0, f115_out1(z1), z2) → f112_out2(z1)
Tuples:

F1_IN(s(z0)) → c1(F62_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F70_IN(s(z0)) → c6(F112_IN(z0))
F72_IN(z0) → c9(F1_IN(z0))
F62_IN(z0) → c11(F70_IN(z0), F72_IN(z0))
F112_IN(z0) → c14(F70_IN(z0))
S tuples:

F112_IN(z0) → c14(F70_IN(z0))
K tuples:

F1_IN(s(z0)) → c1(F62_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F62_IN(z0) → c11(F70_IN(z0), F72_IN(z0))
F72_IN(z0) → c9(F1_IN(z0))
F70_IN(s(z0)) → c6(F112_IN(z0))
Defined Rule Symbols:

f1_in, U1, U2, f70_in, U3, f72_in, U4, f62_in, U5, f112_in, U6

Defined Pair Symbols:

F1_IN, F70_IN, F72_IN, F62_IN, F112_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14