(0) Obligation:

Clauses:

div(0, Y, 0) :- no(zero(Y)).
div(X, Y, s(Z)) :- ','(no(zero(X)), ','(no(zero(Y)), ','(minus(X, Y, U), div(U, Y, Z)))).
minus(0, Y, 0).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
zero(0).
no(X) :- ','(X, ','(!, failure(a))).
no(X1).
failure(b).

Query: div(g,g,a)

(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0, z0) → f2_out1(0)
f2_in(z0, z1) → U1(f129_in(z0, z1), z0, z1)
U1(f129_out1(z0, z1), z2, z3) → f2_out1(s(z1))
f141_in(0, z0) → f141_out1(0)
f141_in(0, 0) → f141_out1(0)
f141_in(z0, 0) → f141_out1(z0)
f141_in(s(z0), s(z1)) → U2(f141_in(z0, z1), s(z0), s(z1))
U2(f141_out1(z0), s(z1), s(z2)) → f141_out1(z0)
f132_in(s(z0), s(z1)) → U3(f141_in(z0, z1), s(z0), s(z1))
U3(f141_out1(z0), s(z1), s(z2)) → f132_out1(z0)
f129_in(z0, z1) → U4(f132_in(z0, z1), z0, z1)
U4(f132_out1(z0), z1, z2) → U5(f2_in(z0, z2), z1, z2, z0)
U5(f2_out1(z0), z1, z2, z3) → f129_out1(z3, z0)
Tuples:

F2_IN(z0, z1) → c1(U1'(f129_in(z0, z1), z0, z1), F129_IN(z0, z1))
F141_IN(s(z0), s(z1)) → c6(U2'(f141_in(z0, z1), s(z0), s(z1)), F141_IN(z0, z1))
F132_IN(s(z0), s(z1)) → c8(U3'(f141_in(z0, z1), s(z0), s(z1)), F141_IN(z0, z1))
F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
U4'(f132_out1(z0), z1, z2) → c11(U5'(f2_in(z0, z2), z1, z2, z0), F2_IN(z0, z2))
S tuples:

F2_IN(z0, z1) → c1(U1'(f129_in(z0, z1), z0, z1), F129_IN(z0, z1))
F141_IN(s(z0), s(z1)) → c6(U2'(f141_in(z0, z1), s(z0), s(z1)), F141_IN(z0, z1))
F132_IN(s(z0), s(z1)) → c8(U3'(f141_in(z0, z1), s(z0), s(z1)), F141_IN(z0, z1))
F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
U4'(f132_out1(z0), z1, z2) → c11(U5'(f2_in(z0, z2), z1, z2, z0), F2_IN(z0, z2))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f141_in, U2, f132_in, U3, f129_in, U4, U5

Defined Pair Symbols:

F2_IN, F141_IN, F132_IN, F129_IN, U4'

Compound Symbols:

c1, c6, c8, c10, c11

(3) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0, z0) → f2_out1(0)
f2_in(z0, z1) → U1(f129_in(z0, z1), z0, z1)
U1(f129_out1(z0, z1), z2, z3) → f2_out1(s(z1))
f141_in(0, z0) → f141_out1(0)
f141_in(0, 0) → f141_out1(0)
f141_in(z0, 0) → f141_out1(z0)
f141_in(s(z0), s(z1)) → U2(f141_in(z0, z1), s(z0), s(z1))
U2(f141_out1(z0), s(z1), s(z2)) → f141_out1(z0)
f132_in(s(z0), s(z1)) → U3(f141_in(z0, z1), s(z0), s(z1))
U3(f141_out1(z0), s(z1), s(z2)) → f132_out1(z0)
f129_in(z0, z1) → U4(f132_in(z0, z1), z0, z1)
U4(f132_out1(z0), z1, z2) → U5(f2_in(z0, z2), z1, z2, z0)
U5(f2_out1(z0), z1, z2, z3) → f129_out1(z3, z0)
Tuples:

F2_IN(z0, z1) → c1(U1'(f129_in(z0, z1), z0, z1), F129_IN(z0, z1))
F141_IN(s(z0), s(z1)) → c6(U2'(f141_in(z0, z1), s(z0), s(z1)), F141_IN(z0, z1))
F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
U4'(f132_out1(z0), z1, z2) → c11(U5'(f2_in(z0, z2), z1, z2, z0), F2_IN(z0, z2))
F132_IN(s(z0), s(z1)) → c(U3'(f141_in(z0, z1), s(z0), s(z1)))
F132_IN(s(z0), s(z1)) → c(F141_IN(z0, z1))
S tuples:

F2_IN(z0, z1) → c1(U1'(f129_in(z0, z1), z0, z1), F129_IN(z0, z1))
F141_IN(s(z0), s(z1)) → c6(U2'(f141_in(z0, z1), s(z0), s(z1)), F141_IN(z0, z1))
F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
U4'(f132_out1(z0), z1, z2) → c11(U5'(f2_in(z0, z2), z1, z2, z0), F2_IN(z0, z2))
F132_IN(s(z0), s(z1)) → c(U3'(f141_in(z0, z1), s(z0), s(z1)))
F132_IN(s(z0), s(z1)) → c(F141_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f141_in, U2, f132_in, U3, f129_in, U4, U5

Defined Pair Symbols:

F2_IN, F141_IN, F129_IN, U4', F132_IN

Compound Symbols:

c1, c6, c10, c11, c

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0, z0) → f2_out1(0)
f2_in(z0, z1) → U1(f129_in(z0, z1), z0, z1)
U1(f129_out1(z0, z1), z2, z3) → f2_out1(s(z1))
f141_in(0, z0) → f141_out1(0)
f141_in(0, 0) → f141_out1(0)
f141_in(z0, 0) → f141_out1(z0)
f141_in(s(z0), s(z1)) → U2(f141_in(z0, z1), s(z0), s(z1))
U2(f141_out1(z0), s(z1), s(z2)) → f141_out1(z0)
f132_in(s(z0), s(z1)) → U3(f141_in(z0, z1), s(z0), s(z1))
U3(f141_out1(z0), s(z1), s(z2)) → f132_out1(z0)
f129_in(z0, z1) → U4(f132_in(z0, z1), z0, z1)
U4(f132_out1(z0), z1, z2) → U5(f2_in(z0, z2), z1, z2, z0)
U5(f2_out1(z0), z1, z2, z3) → f129_out1(z3, z0)
Tuples:

F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
F132_IN(s(z0), s(z1)) → c(F141_IN(z0, z1))
F2_IN(z0, z1) → c1(F129_IN(z0, z1))
F141_IN(s(z0), s(z1)) → c6(F141_IN(z0, z1))
U4'(f132_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F132_IN(s(z0), s(z1)) → c
S tuples:

F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
F132_IN(s(z0), s(z1)) → c(F141_IN(z0, z1))
F2_IN(z0, z1) → c1(F129_IN(z0, z1))
F141_IN(s(z0), s(z1)) → c6(F141_IN(z0, z1))
U4'(f132_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F132_IN(s(z0), s(z1)) → c
K tuples:none
Defined Rule Symbols:

f2_in, U1, f141_in, U2, f132_in, U3, f129_in, U4, U5

Defined Pair Symbols:

F129_IN, F132_IN, F2_IN, F141_IN, U4'

Compound Symbols:

c10, c, c1, c6, c11, c

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F132_IN(s(z0), s(z1)) → c
We considered the (Usable) Rules:

f132_in(s(z0), s(z1)) → U3(f141_in(z0, z1), s(z0), s(z1))
f141_in(0, z0) → f141_out1(0)
f141_in(0, 0) → f141_out1(0)
f141_in(z0, 0) → f141_out1(z0)
f141_in(s(z0), s(z1)) → U2(f141_in(z0, z1), s(z0), s(z1))
U3(f141_out1(z0), s(z1), s(z2)) → f132_out1(z0)
U2(f141_out1(z0), s(z1), s(z2)) → f141_out1(z0)
And the Tuples:

F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
F132_IN(s(z0), s(z1)) → c(F141_IN(z0, z1))
F2_IN(z0, z1) → c1(F129_IN(z0, z1))
F141_IN(s(z0), s(z1)) → c6(F141_IN(z0, z1))
U4'(f132_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F132_IN(s(z0), s(z1)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F129_IN(x1, x2)) = [2] + x1   
POL(F132_IN(x1, x2)) = [2]   
POL(F141_IN(x1, x2)) = [2]   
POL(F2_IN(x1, x2)) = [2] + x1   
POL(U2(x1, x2, x3)) = x1   
POL(U3(x1, x2, x3)) = [1] + x1   
POL(U4'(x1, x2, x3)) = x1   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c6(x1)) = x1   
POL(f132_in(x1, x2)) = x1   
POL(f132_out1(x1)) = [2] + x1   
POL(f141_in(x1, x2)) = [2] + x1   
POL(f141_out1(x1)) = [1] + x1   
POL(s(x1)) = [3] + x1   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0, z0) → f2_out1(0)
f2_in(z0, z1) → U1(f129_in(z0, z1), z0, z1)
U1(f129_out1(z0, z1), z2, z3) → f2_out1(s(z1))
f141_in(0, z0) → f141_out1(0)
f141_in(0, 0) → f141_out1(0)
f141_in(z0, 0) → f141_out1(z0)
f141_in(s(z0), s(z1)) → U2(f141_in(z0, z1), s(z0), s(z1))
U2(f141_out1(z0), s(z1), s(z2)) → f141_out1(z0)
f132_in(s(z0), s(z1)) → U3(f141_in(z0, z1), s(z0), s(z1))
U3(f141_out1(z0), s(z1), s(z2)) → f132_out1(z0)
f129_in(z0, z1) → U4(f132_in(z0, z1), z0, z1)
U4(f132_out1(z0), z1, z2) → U5(f2_in(z0, z2), z1, z2, z0)
U5(f2_out1(z0), z1, z2, z3) → f129_out1(z3, z0)
Tuples:

F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
F132_IN(s(z0), s(z1)) → c(F141_IN(z0, z1))
F2_IN(z0, z1) → c1(F129_IN(z0, z1))
F141_IN(s(z0), s(z1)) → c6(F141_IN(z0, z1))
U4'(f132_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F132_IN(s(z0), s(z1)) → c
S tuples:

F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
F132_IN(s(z0), s(z1)) → c(F141_IN(z0, z1))
F2_IN(z0, z1) → c1(F129_IN(z0, z1))
F141_IN(s(z0), s(z1)) → c6(F141_IN(z0, z1))
U4'(f132_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
K tuples:

F132_IN(s(z0), s(z1)) → c
Defined Rule Symbols:

f2_in, U1, f141_in, U2, f132_in, U3, f129_in, U4, U5

Defined Pair Symbols:

F129_IN, F132_IN, F2_IN, F141_IN, U4'

Compound Symbols:

c10, c, c1, c6, c11, c

(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

U4'(f132_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
We considered the (Usable) Rules:

f132_in(s(z0), s(z1)) → U3(f141_in(z0, z1), s(z0), s(z1))
f141_in(0, z0) → f141_out1(0)
f141_in(0, 0) → f141_out1(0)
f141_in(z0, 0) → f141_out1(z0)
f141_in(s(z0), s(z1)) → U2(f141_in(z0, z1), s(z0), s(z1))
U3(f141_out1(z0), s(z1), s(z2)) → f132_out1(z0)
U2(f141_out1(z0), s(z1), s(z2)) → f141_out1(z0)
And the Tuples:

F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
F132_IN(s(z0), s(z1)) → c(F141_IN(z0, z1))
F2_IN(z0, z1) → c1(F129_IN(z0, z1))
F141_IN(s(z0), s(z1)) → c6(F141_IN(z0, z1))
U4'(f132_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F132_IN(s(z0), s(z1)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F129_IN(x1, x2)) = x1   
POL(F132_IN(x1, x2)) = 0   
POL(F141_IN(x1, x2)) = 0   
POL(F2_IN(x1, x2)) = x1   
POL(U2(x1, x2, x3)) = x1   
POL(U3(x1, x2, x3)) = [1] + x1   
POL(U4'(x1, x2, x3)) = x1   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c6(x1)) = x1   
POL(f132_in(x1, x2)) = x1   
POL(f132_out1(x1)) = [1] + x1   
POL(f141_in(x1, x2)) = x1   
POL(f141_out1(x1)) = x1   
POL(s(x1)) = [1] + x1   

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0, z0) → f2_out1(0)
f2_in(z0, z1) → U1(f129_in(z0, z1), z0, z1)
U1(f129_out1(z0, z1), z2, z3) → f2_out1(s(z1))
f141_in(0, z0) → f141_out1(0)
f141_in(0, 0) → f141_out1(0)
f141_in(z0, 0) → f141_out1(z0)
f141_in(s(z0), s(z1)) → U2(f141_in(z0, z1), s(z0), s(z1))
U2(f141_out1(z0), s(z1), s(z2)) → f141_out1(z0)
f132_in(s(z0), s(z1)) → U3(f141_in(z0, z1), s(z0), s(z1))
U3(f141_out1(z0), s(z1), s(z2)) → f132_out1(z0)
f129_in(z0, z1) → U4(f132_in(z0, z1), z0, z1)
U4(f132_out1(z0), z1, z2) → U5(f2_in(z0, z2), z1, z2, z0)
U5(f2_out1(z0), z1, z2, z3) → f129_out1(z3, z0)
Tuples:

F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
F132_IN(s(z0), s(z1)) → c(F141_IN(z0, z1))
F2_IN(z0, z1) → c1(F129_IN(z0, z1))
F141_IN(s(z0), s(z1)) → c6(F141_IN(z0, z1))
U4'(f132_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F132_IN(s(z0), s(z1)) → c
S tuples:

F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
F132_IN(s(z0), s(z1)) → c(F141_IN(z0, z1))
F2_IN(z0, z1) → c1(F129_IN(z0, z1))
F141_IN(s(z0), s(z1)) → c6(F141_IN(z0, z1))
K tuples:

F132_IN(s(z0), s(z1)) → c
U4'(f132_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
Defined Rule Symbols:

f2_in, U1, f141_in, U2, f132_in, U3, f129_in, U4, U5

Defined Pair Symbols:

F129_IN, F132_IN, F2_IN, F141_IN, U4'

Compound Symbols:

c10, c, c1, c6, c11, c

(11) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F2_IN(z0, z1) → c1(F129_IN(z0, z1))
F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
F132_IN(s(z0), s(z1)) → c(F141_IN(z0, z1))
U4'(f132_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F132_IN(s(z0), s(z1)) → c

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0, z0) → f2_out1(0)
f2_in(z0, z1) → U1(f129_in(z0, z1), z0, z1)
U1(f129_out1(z0, z1), z2, z3) → f2_out1(s(z1))
f141_in(0, z0) → f141_out1(0)
f141_in(0, 0) → f141_out1(0)
f141_in(z0, 0) → f141_out1(z0)
f141_in(s(z0), s(z1)) → U2(f141_in(z0, z1), s(z0), s(z1))
U2(f141_out1(z0), s(z1), s(z2)) → f141_out1(z0)
f132_in(s(z0), s(z1)) → U3(f141_in(z0, z1), s(z0), s(z1))
U3(f141_out1(z0), s(z1), s(z2)) → f132_out1(z0)
f129_in(z0, z1) → U4(f132_in(z0, z1), z0, z1)
U4(f132_out1(z0), z1, z2) → U5(f2_in(z0, z2), z1, z2, z0)
U5(f2_out1(z0), z1, z2, z3) → f129_out1(z3, z0)
Tuples:

F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
F132_IN(s(z0), s(z1)) → c(F141_IN(z0, z1))
F2_IN(z0, z1) → c1(F129_IN(z0, z1))
F141_IN(s(z0), s(z1)) → c6(F141_IN(z0, z1))
U4'(f132_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F132_IN(s(z0), s(z1)) → c
S tuples:

F141_IN(s(z0), s(z1)) → c6(F141_IN(z0, z1))
K tuples:

F132_IN(s(z0), s(z1)) → c
U4'(f132_out1(z0), z1, z2) → c11(F2_IN(z0, z2))
F2_IN(z0, z1) → c1(F129_IN(z0, z1))
F129_IN(z0, z1) → c10(U4'(f132_in(z0, z1), z0, z1), F132_IN(z0, z1))
F132_IN(s(z0), s(z1)) → c(F141_IN(z0, z1))
Defined Rule Symbols:

f2_in, U1, f141_in, U2, f132_in, U3, f129_in, U4, U5

Defined Pair Symbols:

F129_IN, F132_IN, F2_IN, F141_IN, U4'

Compound Symbols:

c10, c, c1, c6, c11, c

(13) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0, z0) → f1_out1(0)
f1_in(z0, z1) → U1(f130_in(z0, z1), z0, z1)
U1(f130_out1(z0, z1), z2, z3) → f1_out1(s(z1))
f142_in(0, z0) → f142_out1(0)
f142_in(0, 0) → f142_out1(0)
f142_in(z0, 0) → f142_out1(z0)
f142_in(s(z0), s(z1)) → U2(f142_in(z0, z1), s(z0), s(z1))
U2(f142_out1(z0), s(z1), s(z2)) → f142_out1(z0)
f131_in(s(z0), s(z1)) → U3(f142_in(z0, z1), s(z0), s(z1))
U3(f142_out1(z0), s(z1), s(z2)) → f131_out1(z0)
f130_in(z0, z1) → U4(f131_in(z0, z1), z0, z1)
U4(f131_out1(z0), z1, z2) → U5(f1_in(z0, z2), z1, z2, z0)
U5(f1_out1(z0), z1, z2, z3) → f130_out1(z3, z0)
Tuples:

F1_IN(z0, z1) → c1(U1'(f130_in(z0, z1), z0, z1), F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(U2'(f142_in(z0, z1), s(z0), s(z1)), F142_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c8(U3'(f142_in(z0, z1), s(z0), s(z1)), F142_IN(z0, z1))
F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(U5'(f1_in(z0, z2), z1, z2, z0), F1_IN(z0, z2))
S tuples:

F1_IN(z0, z1) → c1(U1'(f130_in(z0, z1), z0, z1), F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(U2'(f142_in(z0, z1), s(z0), s(z1)), F142_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c8(U3'(f142_in(z0, z1), s(z0), s(z1)), F142_IN(z0, z1))
F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(U5'(f1_in(z0, z2), z1, z2, z0), F1_IN(z0, z2))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f142_in, U2, f131_in, U3, f130_in, U4, U5

Defined Pair Symbols:

F1_IN, F142_IN, F131_IN, F130_IN, U4'

Compound Symbols:

c1, c6, c8, c10, c11

(15) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0, z0) → f1_out1(0)
f1_in(z0, z1) → U1(f130_in(z0, z1), z0, z1)
U1(f130_out1(z0, z1), z2, z3) → f1_out1(s(z1))
f142_in(0, z0) → f142_out1(0)
f142_in(0, 0) → f142_out1(0)
f142_in(z0, 0) → f142_out1(z0)
f142_in(s(z0), s(z1)) → U2(f142_in(z0, z1), s(z0), s(z1))
U2(f142_out1(z0), s(z1), s(z2)) → f142_out1(z0)
f131_in(s(z0), s(z1)) → U3(f142_in(z0, z1), s(z0), s(z1))
U3(f142_out1(z0), s(z1), s(z2)) → f131_out1(z0)
f130_in(z0, z1) → U4(f131_in(z0, z1), z0, z1)
U4(f131_out1(z0), z1, z2) → U5(f1_in(z0, z2), z1, z2, z0)
U5(f1_out1(z0), z1, z2, z3) → f130_out1(z3, z0)
Tuples:

F1_IN(z0, z1) → c1(U1'(f130_in(z0, z1), z0, z1), F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(U2'(f142_in(z0, z1), s(z0), s(z1)), F142_IN(z0, z1))
F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(U5'(f1_in(z0, z2), z1, z2, z0), F1_IN(z0, z2))
F131_IN(s(z0), s(z1)) → c(U3'(f142_in(z0, z1), s(z0), s(z1)))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
S tuples:

F1_IN(z0, z1) → c1(U1'(f130_in(z0, z1), z0, z1), F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(U2'(f142_in(z0, z1), s(z0), s(z1)), F142_IN(z0, z1))
F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(U5'(f1_in(z0, z2), z1, z2, z0), F1_IN(z0, z2))
F131_IN(s(z0), s(z1)) → c(U3'(f142_in(z0, z1), s(z0), s(z1)))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f142_in, U2, f131_in, U3, f130_in, U4, U5

Defined Pair Symbols:

F1_IN, F142_IN, F130_IN, U4', F131_IN

Compound Symbols:

c1, c6, c10, c11, c

(17) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0, z0) → f1_out1(0)
f1_in(z0, z1) → U1(f130_in(z0, z1), z0, z1)
U1(f130_out1(z0, z1), z2, z3) → f1_out1(s(z1))
f142_in(0, z0) → f142_out1(0)
f142_in(0, 0) → f142_out1(0)
f142_in(z0, 0) → f142_out1(z0)
f142_in(s(z0), s(z1)) → U2(f142_in(z0, z1), s(z0), s(z1))
U2(f142_out1(z0), s(z1), s(z2)) → f142_out1(z0)
f131_in(s(z0), s(z1)) → U3(f142_in(z0, z1), s(z0), s(z1))
U3(f142_out1(z0), s(z1), s(z2)) → f131_out1(z0)
f130_in(z0, z1) → U4(f131_in(z0, z1), z0, z1)
U4(f131_out1(z0), z1, z2) → U5(f1_in(z0, z2), z1, z2, z0)
U5(f1_out1(z0), z1, z2, z3) → f130_out1(z3, z0)
Tuples:

F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
F131_IN(s(z0), s(z1)) → c
S tuples:

F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
F131_IN(s(z0), s(z1)) → c
K tuples:none
Defined Rule Symbols:

f1_in, U1, f142_in, U2, f131_in, U3, f130_in, U4, U5

Defined Pair Symbols:

F130_IN, F131_IN, F1_IN, F142_IN, U4'

Compound Symbols:

c10, c, c1, c6, c11, c

(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F131_IN(s(z0), s(z1)) → c
We considered the (Usable) Rules:

f131_in(s(z0), s(z1)) → U3(f142_in(z0, z1), s(z0), s(z1))
f142_in(0, z0) → f142_out1(0)
f142_in(0, 0) → f142_out1(0)
f142_in(z0, 0) → f142_out1(z0)
f142_in(s(z0), s(z1)) → U2(f142_in(z0, z1), s(z0), s(z1))
U3(f142_out1(z0), s(z1), s(z2)) → f131_out1(z0)
U2(f142_out1(z0), s(z1), s(z2)) → f142_out1(z0)
And the Tuples:

F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
F131_IN(s(z0), s(z1)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F130_IN(x1, x2)) = [2] + x1   
POL(F131_IN(x1, x2)) = [2]   
POL(F142_IN(x1, x2)) = [2]   
POL(F1_IN(x1, x2)) = [2] + x1   
POL(U2(x1, x2, x3)) = x1   
POL(U3(x1, x2, x3)) = [1] + x1   
POL(U4'(x1, x2, x3)) = x1   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c6(x1)) = x1   
POL(f131_in(x1, x2)) = x1   
POL(f131_out1(x1)) = [2] + x1   
POL(f142_in(x1, x2)) = [2] + x1   
POL(f142_out1(x1)) = [1] + x1   
POL(s(x1)) = [3] + x1   

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0, z0) → f1_out1(0)
f1_in(z0, z1) → U1(f130_in(z0, z1), z0, z1)
U1(f130_out1(z0, z1), z2, z3) → f1_out1(s(z1))
f142_in(0, z0) → f142_out1(0)
f142_in(0, 0) → f142_out1(0)
f142_in(z0, 0) → f142_out1(z0)
f142_in(s(z0), s(z1)) → U2(f142_in(z0, z1), s(z0), s(z1))
U2(f142_out1(z0), s(z1), s(z2)) → f142_out1(z0)
f131_in(s(z0), s(z1)) → U3(f142_in(z0, z1), s(z0), s(z1))
U3(f142_out1(z0), s(z1), s(z2)) → f131_out1(z0)
f130_in(z0, z1) → U4(f131_in(z0, z1), z0, z1)
U4(f131_out1(z0), z1, z2) → U5(f1_in(z0, z2), z1, z2, z0)
U5(f1_out1(z0), z1, z2, z3) → f130_out1(z3, z0)
Tuples:

F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
F131_IN(s(z0), s(z1)) → c
S tuples:

F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
K tuples:

F131_IN(s(z0), s(z1)) → c
Defined Rule Symbols:

f1_in, U1, f142_in, U2, f131_in, U3, f130_in, U4, U5

Defined Pair Symbols:

F130_IN, F131_IN, F1_IN, F142_IN, U4'

Compound Symbols:

c10, c, c1, c6, c11, c

(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
We considered the (Usable) Rules:

f131_in(s(z0), s(z1)) → U3(f142_in(z0, z1), s(z0), s(z1))
f142_in(0, z0) → f142_out1(0)
f142_in(0, 0) → f142_out1(0)
f142_in(z0, 0) → f142_out1(z0)
f142_in(s(z0), s(z1)) → U2(f142_in(z0, z1), s(z0), s(z1))
U3(f142_out1(z0), s(z1), s(z2)) → f131_out1(z0)
U2(f142_out1(z0), s(z1), s(z2)) → f142_out1(z0)
And the Tuples:

F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
F131_IN(s(z0), s(z1)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F130_IN(x1, x2)) = x1   
POL(F131_IN(x1, x2)) = 0   
POL(F142_IN(x1, x2)) = 0   
POL(F1_IN(x1, x2)) = x1   
POL(U2(x1, x2, x3)) = x1   
POL(U3(x1, x2, x3)) = [1] + x1   
POL(U4'(x1, x2, x3)) = x1   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c6(x1)) = x1   
POL(f131_in(x1, x2)) = x1   
POL(f131_out1(x1)) = [1] + x1   
POL(f142_in(x1, x2)) = x1   
POL(f142_out1(x1)) = x1   
POL(s(x1)) = [1] + x1   

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0, z0) → f1_out1(0)
f1_in(z0, z1) → U1(f130_in(z0, z1), z0, z1)
U1(f130_out1(z0, z1), z2, z3) → f1_out1(s(z1))
f142_in(0, z0) → f142_out1(0)
f142_in(0, 0) → f142_out1(0)
f142_in(z0, 0) → f142_out1(z0)
f142_in(s(z0), s(z1)) → U2(f142_in(z0, z1), s(z0), s(z1))
U2(f142_out1(z0), s(z1), s(z2)) → f142_out1(z0)
f131_in(s(z0), s(z1)) → U3(f142_in(z0, z1), s(z0), s(z1))
U3(f142_out1(z0), s(z1), s(z2)) → f131_out1(z0)
f130_in(z0, z1) → U4(f131_in(z0, z1), z0, z1)
U4(f131_out1(z0), z1, z2) → U5(f1_in(z0, z2), z1, z2, z0)
U5(f1_out1(z0), z1, z2, z3) → f130_out1(z3, z0)
Tuples:

F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
F131_IN(s(z0), s(z1)) → c
S tuples:

F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
K tuples:

F131_IN(s(z0), s(z1)) → c
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
Defined Rule Symbols:

f1_in, U1, f142_in, U2, f131_in, U3, f130_in, U4, U5

Defined Pair Symbols:

F130_IN, F131_IN, F1_IN, F142_IN, U4'

Compound Symbols:

c10, c, c1, c6, c11, c

(23) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
F131_IN(s(z0), s(z1)) → c

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0, z0) → f1_out1(0)
f1_in(z0, z1) → U1(f130_in(z0, z1), z0, z1)
U1(f130_out1(z0, z1), z2, z3) → f1_out1(s(z1))
f142_in(0, z0) → f142_out1(0)
f142_in(0, 0) → f142_out1(0)
f142_in(z0, 0) → f142_out1(z0)
f142_in(s(z0), s(z1)) → U2(f142_in(z0, z1), s(z0), s(z1))
U2(f142_out1(z0), s(z1), s(z2)) → f142_out1(z0)
f131_in(s(z0), s(z1)) → U3(f142_in(z0, z1), s(z0), s(z1))
U3(f142_out1(z0), s(z1), s(z2)) → f131_out1(z0)
f130_in(z0, z1) → U4(f131_in(z0, z1), z0, z1)
U4(f131_out1(z0), z1, z2) → U5(f1_in(z0, z2), z1, z2, z0)
U5(f1_out1(z0), z1, z2, z3) → f130_out1(z3, z0)
Tuples:

F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
F131_IN(s(z0), s(z1)) → c
S tuples:

F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
K tuples:

F131_IN(s(z0), s(z1)) → c
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
Defined Rule Symbols:

f1_in, U1, f142_in, U2, f131_in, U3, f130_in, U4, U5

Defined Pair Symbols:

F130_IN, F131_IN, F1_IN, F142_IN, U4'

Compound Symbols:

c10, c, c1, c6, c11, c

(25) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
We considered the (Usable) Rules:

f131_in(s(z0), s(z1)) → U3(f142_in(z0, z1), s(z0), s(z1))
f142_in(0, z0) → f142_out1(0)
f142_in(0, 0) → f142_out1(0)
f142_in(z0, 0) → f142_out1(z0)
f142_in(s(z0), s(z1)) → U2(f142_in(z0, z1), s(z0), s(z1))
U3(f142_out1(z0), s(z1), s(z2)) → f131_out1(z0)
U2(f142_out1(z0), s(z1), s(z2)) → f142_out1(z0)
And the Tuples:

F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
F131_IN(s(z0), s(z1)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F130_IN(x1, x2)) = x1 + x2 + x22 + x1·x2   
POL(F131_IN(x1, x2)) = x2   
POL(F142_IN(x1, x2)) = x2   
POL(F1_IN(x1, x2)) = [1] + x1 + x2 + x22 + x1·x2   
POL(U2(x1, x2, x3)) = x1   
POL(U3(x1, x2, x3)) = x1   
POL(U4'(x1, x2, x3)) = x1 + x32 + x1·x3   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1, x2)) = x1 + x2   
POL(c11(x1)) = x1   
POL(c6(x1)) = x1   
POL(f131_in(x1, x2)) = x1   
POL(f131_out1(x1)) = [1] + x1   
POL(f142_in(x1, x2)) = [1] + x1   
POL(f142_out1(x1)) = [1] + x1   
POL(s(x1)) = [1] + x1   

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0, z0) → f1_out1(0)
f1_in(z0, z1) → U1(f130_in(z0, z1), z0, z1)
U1(f130_out1(z0, z1), z2, z3) → f1_out1(s(z1))
f142_in(0, z0) → f142_out1(0)
f142_in(0, 0) → f142_out1(0)
f142_in(z0, 0) → f142_out1(z0)
f142_in(s(z0), s(z1)) → U2(f142_in(z0, z1), s(z0), s(z1))
U2(f142_out1(z0), s(z1), s(z2)) → f142_out1(z0)
f131_in(s(z0), s(z1)) → U3(f142_in(z0, z1), s(z0), s(z1))
U3(f142_out1(z0), s(z1), s(z2)) → f131_out1(z0)
f130_in(z0, z1) → U4(f131_in(z0, z1), z0, z1)
U4(f131_out1(z0), z1, z2) → U5(f1_in(z0, z2), z1, z2, z0)
U5(f1_out1(z0), z1, z2, z3) → f130_out1(z3, z0)
Tuples:

F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
F131_IN(s(z0), s(z1)) → c
S tuples:none
K tuples:

F131_IN(s(z0), s(z1)) → c
U4'(f131_out1(z0), z1, z2) → c11(F1_IN(z0, z2))
F1_IN(z0, z1) → c1(F130_IN(z0, z1))
F130_IN(z0, z1) → c10(U4'(f131_in(z0, z1), z0, z1), F131_IN(z0, z1))
F131_IN(s(z0), s(z1)) → c(F142_IN(z0, z1))
F142_IN(s(z0), s(z1)) → c6(F142_IN(z0, z1))
Defined Rule Symbols:

f1_in, U1, f142_in, U2, f131_in, U3, f130_in, U4, U5

Defined Pair Symbols:

F130_IN, F131_IN, F1_IN, F142_IN, U4'

Compound Symbols:

c10, c, c1, c6, c11, c

(27) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(28) BOUNDS(O(1), O(1))