(0) Obligation:

Clauses:

countstack(empty, X) :- ','(!, eq(X, 0)).
countstack(S, X) :- ','(pop(S, nil), ','(!, ','(popped(S, Pd), countstack(Pd, X)))).
countstack(S, s(X)) :- ','(pop(S, P), ','(head(P, H), ','(tail(P, T), ','(popped(S, Pd), countstack(push(H, push(T, Pd)), X))))).
pop(empty, X1).
pop(push(P, X2), P).
popped(empty, empty).
popped(push(X3, Pd), Pd).
head(nil, X4).
head(cons(H, X5), H).
tail(nil, nil).
tail(cons(X6, T), T).
eq(X, X).

Query: countstack(g,a)

(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(empty) → f2_out1(0)
f2_in(push(nil, z0)) → U1(f2_in(z0), push(nil, z0))
f2_in(push(cons(z0, z1), z2)) → U2(f2_in(push(z0, push(z1, z2))), push(cons(z0, z1), z2))
U1(f2_out1(z0), push(nil, z1)) → f2_out1(z0)
U2(f2_out1(z0), push(cons(z1, z2), z3)) → f2_out1(s(z0))
Tuples:

F2_IN(push(nil, z0)) → c1(U1'(f2_in(z0), push(nil, z0)), F2_IN(z0))
F2_IN(push(cons(z0, z1), z2)) → c2(U2'(f2_in(push(z0, push(z1, z2))), push(cons(z0, z1), z2)), F2_IN(push(z0, push(z1, z2))))
S tuples:

F2_IN(push(nil, z0)) → c1(U1'(f2_in(z0), push(nil, z0)), F2_IN(z0))
F2_IN(push(cons(z0, z1), z2)) → c2(U2'(f2_in(push(z0, push(z1, z2))), push(cons(z0, z1), z2)), F2_IN(push(z0, push(z1, z2))))
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2

Defined Pair Symbols:

F2_IN

Compound Symbols:

c1, c2

(3) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(empty) → f2_out1(0)
f2_in(push(nil, z0)) → U1(f2_in(z0), push(nil, z0))
f2_in(push(cons(z0, z1), z2)) → U2(f2_in(push(z0, push(z1, z2))), push(cons(z0, z1), z2))
U1(f2_out1(z0), push(nil, z1)) → f2_out1(z0)
U2(f2_out1(z0), push(cons(z1, z2), z3)) → f2_out1(s(z0))
Tuples:

F2_IN(push(nil, z0)) → c1(F2_IN(z0))
F2_IN(push(cons(z0, z1), z2)) → c2(F2_IN(push(z0, push(z1, z2))))
S tuples:

F2_IN(push(nil, z0)) → c1(F2_IN(z0))
F2_IN(push(cons(z0, z1), z2)) → c2(F2_IN(push(z0, push(z1, z2))))
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2

Defined Pair Symbols:

F2_IN

Compound Symbols:

c1, c2

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(push(nil, z0)) → c1(F2_IN(z0))
F2_IN(push(cons(z0, z1), z2)) → c2(F2_IN(push(z0, push(z1, z2))))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(push(nil, z0)) → c1(F2_IN(z0))
F2_IN(push(cons(z0, z1), z2)) → c2(F2_IN(push(z0, push(z1, z2))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F2_IN(x1)) = x1   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(cons(x1, x2)) = [3] + x1 + x2   
POL(nil) = 0   
POL(push(x1, x2)) = [1] + x1 + x2   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(empty) → f2_out1(0)
f2_in(push(nil, z0)) → U1(f2_in(z0), push(nil, z0))
f2_in(push(cons(z0, z1), z2)) → U2(f2_in(push(z0, push(z1, z2))), push(cons(z0, z1), z2))
U1(f2_out1(z0), push(nil, z1)) → f2_out1(z0)
U2(f2_out1(z0), push(cons(z1, z2), z3)) → f2_out1(s(z0))
Tuples:

F2_IN(push(nil, z0)) → c1(F2_IN(z0))
F2_IN(push(cons(z0, z1), z2)) → c2(F2_IN(push(z0, push(z1, z2))))
S tuples:none
K tuples:

F2_IN(push(nil, z0)) → c1(F2_IN(z0))
F2_IN(push(cons(z0, z1), z2)) → c2(F2_IN(push(z0, push(z1, z2))))
Defined Rule Symbols:

f2_in, U1, U2

Defined Pair Symbols:

F2_IN

Compound Symbols:

c1, c2

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))

(9) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(empty) → f1_out1(0)
f1_in(push(nil, z0)) → U1(f1_in(z0), push(nil, z0))
f1_in(push(cons(z0, z1), z2)) → U2(f1_in(push(z0, push(z1, z2))), push(cons(z0, z1), z2))
U1(f1_out1(z0), push(nil, z1)) → f1_out1(z0)
U2(f1_out1(z0), push(cons(z1, z2), z3)) → f1_out1(s(z0))
Tuples:

F1_IN(push(nil, z0)) → c1(U1'(f1_in(z0), push(nil, z0)), F1_IN(z0))
F1_IN(push(cons(z0, z1), z2)) → c2(U2'(f1_in(push(z0, push(z1, z2))), push(cons(z0, z1), z2)), F1_IN(push(z0, push(z1, z2))))
S tuples:

F1_IN(push(nil, z0)) → c1(U1'(f1_in(z0), push(nil, z0)), F1_IN(z0))
F1_IN(push(cons(z0, z1), z2)) → c2(U2'(f1_in(push(z0, push(z1, z2))), push(cons(z0, z1), z2)), F1_IN(push(z0, push(z1, z2))))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1, c2

(11) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing tuple parts

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(empty) → f1_out1(0)
f1_in(push(nil, z0)) → U1(f1_in(z0), push(nil, z0))
f1_in(push(cons(z0, z1), z2)) → U2(f1_in(push(z0, push(z1, z2))), push(cons(z0, z1), z2))
U1(f1_out1(z0), push(nil, z1)) → f1_out1(z0)
U2(f1_out1(z0), push(cons(z1, z2), z3)) → f1_out1(s(z0))
Tuples:

F1_IN(push(nil, z0)) → c1(F1_IN(z0))
F1_IN(push(cons(z0, z1), z2)) → c2(F1_IN(push(z0, push(z1, z2))))
S tuples:

F1_IN(push(nil, z0)) → c1(F1_IN(z0))
F1_IN(push(cons(z0, z1), z2)) → c2(F1_IN(push(z0, push(z1, z2))))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1, c2

(13) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F1_IN(push(nil, z0)) → c1(F1_IN(z0))
F1_IN(push(cons(z0, z1), z2)) → c2(F1_IN(push(z0, push(z1, z2))))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(push(nil, z0)) → c1(F1_IN(z0))
F1_IN(push(cons(z0, z1), z2)) → c2(F1_IN(push(z0, push(z1, z2))))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F1_IN(x1)) = x1   
POL(c1(x1)) = x1   
POL(c2(x1)) = x1   
POL(cons(x1, x2)) = [3] + x1 + x2   
POL(nil) = 0   
POL(push(x1, x2)) = [1] + x1 + x2   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(empty) → f1_out1(0)
f1_in(push(nil, z0)) → U1(f1_in(z0), push(nil, z0))
f1_in(push(cons(z0, z1), z2)) → U2(f1_in(push(z0, push(z1, z2))), push(cons(z0, z1), z2))
U1(f1_out1(z0), push(nil, z1)) → f1_out1(z0)
U2(f1_out1(z0), push(cons(z1, z2), z3)) → f1_out1(s(z0))
Tuples:

F1_IN(push(nil, z0)) → c1(F1_IN(z0))
F1_IN(push(cons(z0, z1), z2)) → c2(F1_IN(push(z0, push(z1, z2))))
S tuples:none
K tuples:

F1_IN(push(nil, z0)) → c1(F1_IN(z0))
F1_IN(push(cons(z0, z1), z2)) → c2(F1_IN(push(z0, push(z1, z2))))
Defined Rule Symbols:

f1_in, U1, U2

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1, c2