(0) Obligation:
Clauses:
star(X1, []).
star(.(X, U), .(X, W)) :- ','(app(U, V, W), star(.(X, U), W)).
app([], L, L).
app(.(X, L), M, .(X, N)) :- app(L, M, N).
Query: star(g,g)
(1) LPReorderTransformerProof (EQUIVALENT transformation)
Reordered facts before rules in definite LP [PROLOG].
(2) Obligation:
Clauses:
star(X1, []).
app([], L, L).
star(.(X, U), .(X, W)) :- ','(app(U, V, W), star(.(X, U), W)).
app(.(X, L), M, .(X, N)) :- app(L, M, N).
Query: star(g,g)
(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0, []) → f1_out1
f1_in(.(z0, z1), .(z0, z2)) → U1(f13_in(z1, z2, z0), .(z0, z1), .(z0, z2))
U1(f13_out1(z0), .(z1, z2), .(z1, z3)) → f1_out1
f22_in([], z0) → f22_out1(z0)
f22_in(.(z0, z1), .(z0, z2)) → U2(f22_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f22_out1(z0), .(z1, z2), .(z1, z3)) → f22_out1(z0)
f13_in(z0, z1, z2) → U3(f22_in(z0, z1), z0, z1, z2)
U3(f22_out1(z0), z1, z2, z3) → U4(f1_in(.(z3, z1), z2), z1, z2, z3, z0)
U4(f1_out1, z0, z1, z2, z3) → f13_out1(z3)
Tuples:
F1_IN(.(z0, z1), .(z0, z2)) → c1(U1'(f13_in(z1, z2, z0), .(z0, z1), .(z0, z2)), F13_IN(z1, z2, z0))
F22_IN(.(z0, z1), .(z0, z2)) → c4(U2'(f22_in(z1, z2), .(z0, z1), .(z0, z2)), F22_IN(z1, z2))
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
U3'(f22_out1(z0), z1, z2, z3) → c7(U4'(f1_in(.(z3, z1), z2), z1, z2, z3, z0), F1_IN(.(z3, z1), z2))
S tuples:
F1_IN(.(z0, z1), .(z0, z2)) → c1(U1'(f13_in(z1, z2, z0), .(z0, z1), .(z0, z2)), F13_IN(z1, z2, z0))
F22_IN(.(z0, z1), .(z0, z2)) → c4(U2'(f22_in(z1, z2), .(z0, z1), .(z0, z2)), F22_IN(z1, z2))
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
U3'(f22_out1(z0), z1, z2, z3) → c7(U4'(f1_in(.(z3, z1), z2), z1, z2, z3, z0), F1_IN(.(z3, z1), z2))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f22_in, U2, f13_in, U3, U4
Defined Pair Symbols:
F1_IN, F22_IN, F13_IN, U3'
Compound Symbols:
c1, c4, c6, c7
(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0, []) → f1_out1
f1_in(.(z0, z1), .(z0, z2)) → U1(f13_in(z1, z2, z0), .(z0, z1), .(z0, z2))
U1(f13_out1(z0), .(z1, z2), .(z1, z3)) → f1_out1
f22_in([], z0) → f22_out1(z0)
f22_in(.(z0, z1), .(z0, z2)) → U2(f22_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f22_out1(z0), .(z1, z2), .(z1, z3)) → f22_out1(z0)
f13_in(z0, z1, z2) → U3(f22_in(z0, z1), z0, z1, z2)
U3(f22_out1(z0), z1, z2, z3) → U4(f1_in(.(z3, z1), z2), z1, z2, z3, z0)
U4(f1_out1, z0, z1, z2, z3) → f13_out1(z3)
Tuples:
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F13_IN(z1, z2, z0))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z2))
S tuples:
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F13_IN(z1, z2, z0))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z2))
K tuples:none
Defined Rule Symbols:
f1_in, U1, f22_in, U2, f13_in, U3, U4
Defined Pair Symbols:
F13_IN, F1_IN, F22_IN, U3'
Compound Symbols:
c6, c1, c4, c7
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F1_IN(.(z0, z1), .(z0, z2)) → c1(F13_IN(z1, z2, z0))
We considered the (Usable) Rules:
f22_in([], z0) → f22_out1(z0)
f22_in(.(z0, z1), .(z0, z2)) → U2(f22_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f22_out1(z0), .(z1, z2), .(z1, z3)) → f22_out1(z0)
And the Tuples:
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F13_IN(z1, z2, z0))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [2] + x1 + x2
POL(F13_IN(x1, x2, x3)) = x2 + x3
POL(F1_IN(x1, x2)) = x2
POL(F22_IN(x1, x2)) = 0
POL(U2(x1, x2, x3)) = 0
POL(U3'(x1, x2, x3, x4)) = x3
POL([]) = 0
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(f22_in(x1, x2)) = 0
POL(f22_out1(x1)) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0, []) → f1_out1
f1_in(.(z0, z1), .(z0, z2)) → U1(f13_in(z1, z2, z0), .(z0, z1), .(z0, z2))
U1(f13_out1(z0), .(z1, z2), .(z1, z3)) → f1_out1
f22_in([], z0) → f22_out1(z0)
f22_in(.(z0, z1), .(z0, z2)) → U2(f22_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f22_out1(z0), .(z1, z2), .(z1, z3)) → f22_out1(z0)
f13_in(z0, z1, z2) → U3(f22_in(z0, z1), z0, z1, z2)
U3(f22_out1(z0), z1, z2, z3) → U4(f1_in(.(z3, z1), z2), z1, z2, z3, z0)
U4(f1_out1, z0, z1, z2, z3) → f13_out1(z3)
Tuples:
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F13_IN(z1, z2, z0))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z2))
S tuples:
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z2))
K tuples:
F1_IN(.(z0, z1), .(z0, z2)) → c1(F13_IN(z1, z2, z0))
Defined Rule Symbols:
f1_in, U1, f22_in, U2, f13_in, U3, U4
Defined Pair Symbols:
F13_IN, F1_IN, F22_IN, U3'
Compound Symbols:
c6, c1, c4, c7
(9) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
U3'(f22_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z2))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F13_IN(z1, z2, z0))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0, []) → f1_out1
f1_in(.(z0, z1), .(z0, z2)) → U1(f13_in(z1, z2, z0), .(z0, z1), .(z0, z2))
U1(f13_out1(z0), .(z1, z2), .(z1, z3)) → f1_out1
f22_in([], z0) → f22_out1(z0)
f22_in(.(z0, z1), .(z0, z2)) → U2(f22_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f22_out1(z0), .(z1, z2), .(z1, z3)) → f22_out1(z0)
f13_in(z0, z1, z2) → U3(f22_in(z0, z1), z0, z1, z2)
U3(f22_out1(z0), z1, z2, z3) → U4(f1_in(.(z3, z1), z2), z1, z2, z3, z0)
U4(f1_out1, z0, z1, z2, z3) → f13_out1(z3)
Tuples:
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F13_IN(z1, z2, z0))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z2))
S tuples:
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
K tuples:
F1_IN(.(z0, z1), .(z0, z2)) → c1(F13_IN(z1, z2, z0))
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
U3'(f22_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z2))
Defined Rule Symbols:
f1_in, U1, f22_in, U2, f13_in, U3, U4
Defined Pair Symbols:
F13_IN, F1_IN, F22_IN, U3'
Compound Symbols:
c6, c1, c4, c7
(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
We considered the (Usable) Rules:
f22_in([], z0) → f22_out1(z0)
f22_in(.(z0, z1), .(z0, z2)) → U2(f22_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f22_out1(z0), .(z1, z2), .(z1, z3)) → f22_out1(z0)
And the Tuples:
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F13_IN(z1, z2, z0))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [1] + x2
POL(F13_IN(x1, x2, x3)) = x2 + x22
POL(F1_IN(x1, x2)) = x22
POL(F22_IN(x1, x2)) = x2
POL(U2(x1, x2, x3)) = 0
POL(U3'(x1, x2, x3, x4)) = x32
POL([]) = [1]
POL(c1(x1)) = x1
POL(c4(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(f22_in(x1, x2)) = x1 + x12
POL(f22_out1(x1)) = 0
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in(z0, []) → f1_out1
f1_in(.(z0, z1), .(z0, z2)) → U1(f13_in(z1, z2, z0), .(z0, z1), .(z0, z2))
U1(f13_out1(z0), .(z1, z2), .(z1, z3)) → f1_out1
f22_in([], z0) → f22_out1(z0)
f22_in(.(z0, z1), .(z0, z2)) → U2(f22_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f22_out1(z0), .(z1, z2), .(z1, z3)) → f22_out1(z0)
f13_in(z0, z1, z2) → U3(f22_in(z0, z1), z0, z1, z2)
U3(f22_out1(z0), z1, z2, z3) → U4(f1_in(.(z3, z1), z2), z1, z2, z3, z0)
U4(f1_out1, z0, z1, z2, z3) → f13_out1(z3)
Tuples:
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F13_IN(z1, z2, z0))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
U3'(f22_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z2))
S tuples:none
K tuples:
F1_IN(.(z0, z1), .(z0, z2)) → c1(F13_IN(z1, z2, z0))
F13_IN(z0, z1, z2) → c6(U3'(f22_in(z0, z1), z0, z1, z2), F22_IN(z0, z1))
U3'(f22_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z2))
F22_IN(.(z0, z1), .(z0, z2)) → c4(F22_IN(z1, z2))
Defined Rule Symbols:
f1_in, U1, f22_in, U2, f13_in, U3, U4
Defined Pair Symbols:
F13_IN, F1_IN, F22_IN, U3'
Compound Symbols:
c6, c1, c4, c7
(13) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(14) BOUNDS(O(1), O(1))
(15) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0, []) → f2_out1
f2_in(.(z0, []), .(z0, z1)) → U1(f18_in(z0, z1), .(z0, []), .(z0, z1))
f2_in(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → U2(f30_in(z2, z3, z0, z1), .(z0, .(z1, z2)), .(z0, .(z1, z3)))
U1(f18_out1, .(z0, []), .(z0, z1)) → f2_out1
U1(f18_out2(z0), .(z1, []), .(z1, z2)) → f2_out1
U2(f30_out1(z0), .(z1, .(z2, z3)), .(z1, .(z2, z4))) → f2_out1
f32_in([], z0) → f32_out1(z0)
f32_in(.(z0, z1), .(z0, z2)) → U3(f32_in(z1, z2), .(z0, z1), .(z0, z2))
U3(f32_out1(z0), .(z1, z2), .(z1, z3)) → f32_out1(z0)
f30_in(z0, z1, z2, z3) → U4(f32_in(z0, z1), z0, z1, z2, z3)
U4(f32_out1(z0), z1, z2, z3, z4) → U5(f2_in(.(z3, .(z4, z1)), .(z4, z2)), z1, z2, z3, z4, z0)
U5(f2_out1, z0, z1, z2, z3, z4) → f30_out1(z4)
f18_in(z0, z1) → U6(f2_in(.(z0, []), z1), f21_in(z1, z0), z0, z1)
U6(f2_out1, z0, z1, z2) → f18_out1
U6(z0, f21_out1(z1), z2, z3) → f18_out2(z1)
Tuples:
F2_IN(.(z0, []), .(z0, z1)) → c1(U1'(f18_in(z0, z1), .(z0, []), .(z0, z1)), F18_IN(z0, z1))
F2_IN(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → c2(U2'(f30_in(z2, z3, z0, z1), .(z0, .(z1, z2)), .(z0, .(z1, z3))), F30_IN(z2, z3, z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c7(U3'(f32_in(z1, z2), .(z0, z1), .(z0, z2)), F32_IN(z1, z2))
F30_IN(z0, z1, z2, z3) → c9(U4'(f32_in(z0, z1), z0, z1, z2, z3), F32_IN(z0, z1))
U4'(f32_out1(z0), z1, z2, z3, z4) → c10(U5'(f2_in(.(z3, .(z4, z1)), .(z4, z2)), z1, z2, z3, z4, z0), F2_IN(.(z3, .(z4, z1)), .(z4, z2)))
F18_IN(z0, z1) → c12(U6'(f2_in(.(z0, []), z1), f21_in(z1, z0), z0, z1), F2_IN(.(z0, []), z1))
S tuples:
F2_IN(.(z0, []), .(z0, z1)) → c1(U1'(f18_in(z0, z1), .(z0, []), .(z0, z1)), F18_IN(z0, z1))
F2_IN(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → c2(U2'(f30_in(z2, z3, z0, z1), .(z0, .(z1, z2)), .(z0, .(z1, z3))), F30_IN(z2, z3, z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c7(U3'(f32_in(z1, z2), .(z0, z1), .(z0, z2)), F32_IN(z1, z2))
F30_IN(z0, z1, z2, z3) → c9(U4'(f32_in(z0, z1), z0, z1, z2, z3), F32_IN(z0, z1))
U4'(f32_out1(z0), z1, z2, z3, z4) → c10(U5'(f2_in(.(z3, .(z4, z1)), .(z4, z2)), z1, z2, z3, z4, z0), F2_IN(.(z3, .(z4, z1)), .(z4, z2)))
F18_IN(z0, z1) → c12(U6'(f2_in(.(z0, []), z1), f21_in(z1, z0), z0, z1), F2_IN(.(z0, []), z1))
K tuples:none
Defined Rule Symbols:
f2_in, U1, U2, f32_in, U3, f30_in, U4, U5, f18_in, U6
Defined Pair Symbols:
F2_IN, F32_IN, F30_IN, U4', F18_IN
Compound Symbols:
c1, c2, c7, c9, c10, c12
(17) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 5 trailing tuple parts
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0, []) → f2_out1
f2_in(.(z0, []), .(z0, z1)) → U1(f18_in(z0, z1), .(z0, []), .(z0, z1))
f2_in(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → U2(f30_in(z2, z3, z0, z1), .(z0, .(z1, z2)), .(z0, .(z1, z3)))
U1(f18_out1, .(z0, []), .(z0, z1)) → f2_out1
U1(f18_out2(z0), .(z1, []), .(z1, z2)) → f2_out1
U2(f30_out1(z0), .(z1, .(z2, z3)), .(z1, .(z2, z4))) → f2_out1
f32_in([], z0) → f32_out1(z0)
f32_in(.(z0, z1), .(z0, z2)) → U3(f32_in(z1, z2), .(z0, z1), .(z0, z2))
U3(f32_out1(z0), .(z1, z2), .(z1, z3)) → f32_out1(z0)
f30_in(z0, z1, z2, z3) → U4(f32_in(z0, z1), z0, z1, z2, z3)
U4(f32_out1(z0), z1, z2, z3, z4) → U5(f2_in(.(z3, .(z4, z1)), .(z4, z2)), z1, z2, z3, z4, z0)
U5(f2_out1, z0, z1, z2, z3, z4) → f30_out1(z4)
f18_in(z0, z1) → U6(f2_in(.(z0, []), z1), f21_in(z1, z0), z0, z1)
U6(f2_out1, z0, z1, z2) → f18_out1
U6(z0, f21_out1(z1), z2, z3) → f18_out2(z1)
Tuples:
F30_IN(z0, z1, z2, z3) → c9(U4'(f32_in(z0, z1), z0, z1, z2, z3), F32_IN(z0, z1))
F2_IN(.(z0, []), .(z0, z1)) → c1(F18_IN(z0, z1))
F2_IN(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → c2(F30_IN(z2, z3, z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c7(F32_IN(z1, z2))
U4'(f32_out1(z0), z1, z2, z3, z4) → c10(F2_IN(.(z3, .(z4, z1)), .(z4, z2)))
F18_IN(z0, z1) → c12(F2_IN(.(z0, []), z1))
S tuples:
F30_IN(z0, z1, z2, z3) → c9(U4'(f32_in(z0, z1), z0, z1, z2, z3), F32_IN(z0, z1))
F2_IN(.(z0, []), .(z0, z1)) → c1(F18_IN(z0, z1))
F2_IN(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → c2(F30_IN(z2, z3, z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c7(F32_IN(z1, z2))
U4'(f32_out1(z0), z1, z2, z3, z4) → c10(F2_IN(.(z3, .(z4, z1)), .(z4, z2)))
F18_IN(z0, z1) → c12(F2_IN(.(z0, []), z1))
K tuples:none
Defined Rule Symbols:
f2_in, U1, U2, f32_in, U3, f30_in, U4, U5, f18_in, U6
Defined Pair Symbols:
F30_IN, F2_IN, F32_IN, U4', F18_IN
Compound Symbols:
c9, c1, c2, c7, c10, c12
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F2_IN(.(z0, []), .(z0, z1)) → c1(F18_IN(z0, z1))
F2_IN(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → c2(F30_IN(z2, z3, z0, z1))
We considered the (Usable) Rules:
f32_in([], z0) → f32_out1(z0)
f32_in(.(z0, z1), .(z0, z2)) → U3(f32_in(z1, z2), .(z0, z1), .(z0, z2))
U3(f32_out1(z0), .(z1, z2), .(z1, z3)) → f32_out1(z0)
And the Tuples:
F30_IN(z0, z1, z2, z3) → c9(U4'(f32_in(z0, z1), z0, z1, z2, z3), F32_IN(z0, z1))
F2_IN(.(z0, []), .(z0, z1)) → c1(F18_IN(z0, z1))
F2_IN(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → c2(F30_IN(z2, z3, z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c7(F32_IN(z1, z2))
U4'(f32_out1(z0), z1, z2, z3, z4) → c10(F2_IN(.(z3, .(z4, z1)), .(z4, z2)))
F18_IN(z0, z1) → c12(F2_IN(.(z0, []), z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(.(x1, x2)) = [1] + x2
POL(F18_IN(x1, x2)) = x2
POL(F2_IN(x1, x2)) = x2
POL(F30_IN(x1, x2, x3, x4)) = [1] + x2
POL(F32_IN(x1, x2)) = 0
POL(U3(x1, x2, x3)) = 0
POL(U4'(x1, x2, x3, x4, x5)) = [1] + x3
POL([]) = 0
POL(c1(x1)) = x1
POL(c10(x1)) = x1
POL(c12(x1)) = x1
POL(c2(x1)) = x1
POL(c7(x1)) = x1
POL(c9(x1, x2)) = x1 + x2
POL(f32_in(x1, x2)) = 0
POL(f32_out1(x1)) = 0
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0, []) → f2_out1
f2_in(.(z0, []), .(z0, z1)) → U1(f18_in(z0, z1), .(z0, []), .(z0, z1))
f2_in(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → U2(f30_in(z2, z3, z0, z1), .(z0, .(z1, z2)), .(z0, .(z1, z3)))
U1(f18_out1, .(z0, []), .(z0, z1)) → f2_out1
U1(f18_out2(z0), .(z1, []), .(z1, z2)) → f2_out1
U2(f30_out1(z0), .(z1, .(z2, z3)), .(z1, .(z2, z4))) → f2_out1
f32_in([], z0) → f32_out1(z0)
f32_in(.(z0, z1), .(z0, z2)) → U3(f32_in(z1, z2), .(z0, z1), .(z0, z2))
U3(f32_out1(z0), .(z1, z2), .(z1, z3)) → f32_out1(z0)
f30_in(z0, z1, z2, z3) → U4(f32_in(z0, z1), z0, z1, z2, z3)
U4(f32_out1(z0), z1, z2, z3, z4) → U5(f2_in(.(z3, .(z4, z1)), .(z4, z2)), z1, z2, z3, z4, z0)
U5(f2_out1, z0, z1, z2, z3, z4) → f30_out1(z4)
f18_in(z0, z1) → U6(f2_in(.(z0, []), z1), f21_in(z1, z0), z0, z1)
U6(f2_out1, z0, z1, z2) → f18_out1
U6(z0, f21_out1(z1), z2, z3) → f18_out2(z1)
Tuples:
F30_IN(z0, z1, z2, z3) → c9(U4'(f32_in(z0, z1), z0, z1, z2, z3), F32_IN(z0, z1))
F2_IN(.(z0, []), .(z0, z1)) → c1(F18_IN(z0, z1))
F2_IN(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → c2(F30_IN(z2, z3, z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c7(F32_IN(z1, z2))
U4'(f32_out1(z0), z1, z2, z3, z4) → c10(F2_IN(.(z3, .(z4, z1)), .(z4, z2)))
F18_IN(z0, z1) → c12(F2_IN(.(z0, []), z1))
S tuples:
F30_IN(z0, z1, z2, z3) → c9(U4'(f32_in(z0, z1), z0, z1, z2, z3), F32_IN(z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c7(F32_IN(z1, z2))
U4'(f32_out1(z0), z1, z2, z3, z4) → c10(F2_IN(.(z3, .(z4, z1)), .(z4, z2)))
F18_IN(z0, z1) → c12(F2_IN(.(z0, []), z1))
K tuples:
F2_IN(.(z0, []), .(z0, z1)) → c1(F18_IN(z0, z1))
F2_IN(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → c2(F30_IN(z2, z3, z0, z1))
Defined Rule Symbols:
f2_in, U1, U2, f32_in, U3, f30_in, U4, U5, f18_in, U6
Defined Pair Symbols:
F30_IN, F2_IN, F32_IN, U4', F18_IN
Compound Symbols:
c9, c1, c2, c7, c10, c12
(21) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F30_IN(z0, z1, z2, z3) → c9(U4'(f32_in(z0, z1), z0, z1, z2, z3), F32_IN(z0, z1))
U4'(f32_out1(z0), z1, z2, z3, z4) → c10(F2_IN(.(z3, .(z4, z1)), .(z4, z2)))
F18_IN(z0, z1) → c12(F2_IN(.(z0, []), z1))
U4'(f32_out1(z0), z1, z2, z3, z4) → c10(F2_IN(.(z3, .(z4, z1)), .(z4, z2)))
F2_IN(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → c2(F30_IN(z2, z3, z0, z1))
F2_IN(.(z0, []), .(z0, z1)) → c1(F18_IN(z0, z1))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in(z0, []) → f2_out1
f2_in(.(z0, []), .(z0, z1)) → U1(f18_in(z0, z1), .(z0, []), .(z0, z1))
f2_in(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → U2(f30_in(z2, z3, z0, z1), .(z0, .(z1, z2)), .(z0, .(z1, z3)))
U1(f18_out1, .(z0, []), .(z0, z1)) → f2_out1
U1(f18_out2(z0), .(z1, []), .(z1, z2)) → f2_out1
U2(f30_out1(z0), .(z1, .(z2, z3)), .(z1, .(z2, z4))) → f2_out1
f32_in([], z0) → f32_out1(z0)
f32_in(.(z0, z1), .(z0, z2)) → U3(f32_in(z1, z2), .(z0, z1), .(z0, z2))
U3(f32_out1(z0), .(z1, z2), .(z1, z3)) → f32_out1(z0)
f30_in(z0, z1, z2, z3) → U4(f32_in(z0, z1), z0, z1, z2, z3)
U4(f32_out1(z0), z1, z2, z3, z4) → U5(f2_in(.(z3, .(z4, z1)), .(z4, z2)), z1, z2, z3, z4, z0)
U5(f2_out1, z0, z1, z2, z3, z4) → f30_out1(z4)
f18_in(z0, z1) → U6(f2_in(.(z0, []), z1), f21_in(z1, z0), z0, z1)
U6(f2_out1, z0, z1, z2) → f18_out1
U6(z0, f21_out1(z1), z2, z3) → f18_out2(z1)
Tuples:
F30_IN(z0, z1, z2, z3) → c9(U4'(f32_in(z0, z1), z0, z1, z2, z3), F32_IN(z0, z1))
F2_IN(.(z0, []), .(z0, z1)) → c1(F18_IN(z0, z1))
F2_IN(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → c2(F30_IN(z2, z3, z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c7(F32_IN(z1, z2))
U4'(f32_out1(z0), z1, z2, z3, z4) → c10(F2_IN(.(z3, .(z4, z1)), .(z4, z2)))
F18_IN(z0, z1) → c12(F2_IN(.(z0, []), z1))
S tuples:
F32_IN(.(z0, z1), .(z0, z2)) → c7(F32_IN(z1, z2))
K tuples:
F2_IN(.(z0, []), .(z0, z1)) → c1(F18_IN(z0, z1))
F2_IN(.(z0, .(z1, z2)), .(z0, .(z1, z3))) → c2(F30_IN(z2, z3, z0, z1))
F30_IN(z0, z1, z2, z3) → c9(U4'(f32_in(z0, z1), z0, z1, z2, z3), F32_IN(z0, z1))
U4'(f32_out1(z0), z1, z2, z3, z4) → c10(F2_IN(.(z3, .(z4, z1)), .(z4, z2)))
F18_IN(z0, z1) → c12(F2_IN(.(z0, []), z1))
Defined Rule Symbols:
f2_in, U1, U2, f32_in, U3, f30_in, U4, U5, f18_in, U6
Defined Pair Symbols:
F30_IN, F2_IN, F32_IN, U4', F18_IN
Compound Symbols:
c9, c1, c2, c7, c10, c12