(0) Obligation:

Clauses:

star(U, []) :- !.
star([], W) :- ','(!, =(W, [])).
star(U, W) :- ','(app(U, V, W), star(U, V)).
app([], L, L).
app(.(X, L), M, .(X, N)) :- app(L, M, N).
=(X, X).

Query: star(g,g)

(1) BuiltinConflictTransformerProof (BOTH BOUNDS(ID, ID) transformation)

Renamed defined predicates conflicting with built-in predicates [PROLOG].

(2) Obligation:

Clauses:

star(U, []) :- !.
star([], W) :- ','(!, user_defined_=(W, [])).
star(U, W) :- ','(app(U, V, W), star(U, V)).
app([], L, L).
app(.(X, L), M, .(X, N)) :- app(L, M, N).
user_defined_=(X, X).

Query: star(g,g)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, []) → f1_out1
f1_in(.(z0, z1), .(z0, z2)) → U1(f27_in(z1, z2, z0), .(z0, z1), .(z0, z2))
U1(f27_out1(z0), .(z1, z2), .(z1, z3)) → f1_out1
f29_in([], z0) → f29_out1(z0)
f29_in(.(z0, z1), .(z0, z2)) → U2(f29_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f29_out1(z0), .(z1, z2), .(z1, z3)) → f29_out1(z0)
f27_in(z0, z1, z2) → U3(f29_in(z0, z1), z0, z1, z2)
U3(f29_out1(z0), z1, z2, z3) → U4(f1_in(.(z3, z1), z0), z1, z2, z3, z0)
U4(f1_out1, z0, z1, z2, z3) → f27_out1(z3)
Tuples:

F1_IN(.(z0, z1), .(z0, z2)) → c1(U1'(f27_in(z1, z2, z0), .(z0, z1), .(z0, z2)), F27_IN(z1, z2, z0))
F29_IN(.(z0, z1), .(z0, z2)) → c4(U2'(f29_in(z1, z2), .(z0, z1), .(z0, z2)), F29_IN(z1, z2))
F27_IN(z0, z1, z2) → c6(U3'(f29_in(z0, z1), z0, z1, z2), F29_IN(z0, z1))
U3'(f29_out1(z0), z1, z2, z3) → c7(U4'(f1_in(.(z3, z1), z0), z1, z2, z3, z0), F1_IN(.(z3, z1), z0))
S tuples:

F1_IN(.(z0, z1), .(z0, z2)) → c1(U1'(f27_in(z1, z2, z0), .(z0, z1), .(z0, z2)), F27_IN(z1, z2, z0))
F29_IN(.(z0, z1), .(z0, z2)) → c4(U2'(f29_in(z1, z2), .(z0, z1), .(z0, z2)), F29_IN(z1, z2))
F27_IN(z0, z1, z2) → c6(U3'(f29_in(z0, z1), z0, z1, z2), F29_IN(z0, z1))
U3'(f29_out1(z0), z1, z2, z3) → c7(U4'(f1_in(.(z3, z1), z0), z1, z2, z3, z0), F1_IN(.(z3, z1), z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f29_in, U2, f27_in, U3, U4

Defined Pair Symbols:

F1_IN, F29_IN, F27_IN, U3'

Compound Symbols:

c1, c4, c6, c7

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 3 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, []) → f1_out1
f1_in(.(z0, z1), .(z0, z2)) → U1(f27_in(z1, z2, z0), .(z0, z1), .(z0, z2))
U1(f27_out1(z0), .(z1, z2), .(z1, z3)) → f1_out1
f29_in([], z0) → f29_out1(z0)
f29_in(.(z0, z1), .(z0, z2)) → U2(f29_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f29_out1(z0), .(z1, z2), .(z1, z3)) → f29_out1(z0)
f27_in(z0, z1, z2) → U3(f29_in(z0, z1), z0, z1, z2)
U3(f29_out1(z0), z1, z2, z3) → U4(f1_in(.(z3, z1), z0), z1, z2, z3, z0)
U4(f1_out1, z0, z1, z2, z3) → f27_out1(z3)
Tuples:

F27_IN(z0, z1, z2) → c6(U3'(f29_in(z0, z1), z0, z1, z2), F29_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F27_IN(z1, z2, z0))
F29_IN(.(z0, z1), .(z0, z2)) → c4(F29_IN(z1, z2))
U3'(f29_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z0))
S tuples:

F27_IN(z0, z1, z2) → c6(U3'(f29_in(z0, z1), z0, z1, z2), F29_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F27_IN(z1, z2, z0))
F29_IN(.(z0, z1), .(z0, z2)) → c4(F29_IN(z1, z2))
U3'(f29_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f29_in, U2, f27_in, U3, U4

Defined Pair Symbols:

F27_IN, F1_IN, F29_IN, U3'

Compound Symbols:

c6, c1, c4, c7

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F27_IN(z0, z1, z2) → c6(U3'(f29_in(z0, z1), z0, z1, z2), F29_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F27_IN(z1, z2, z0))
We considered the (Usable) Rules:

f29_in([], z0) → f29_out1(z0)
f29_in(.(z0, z1), .(z0, z2)) → U2(f29_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f29_out1(z0), .(z1, z2), .(z1, z3)) → f29_out1(z0)
And the Tuples:

F27_IN(z0, z1, z2) → c6(U3'(f29_in(z0, z1), z0, z1, z2), F29_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F27_IN(z1, z2, z0))
F29_IN(.(z0, z1), .(z0, z2)) → c4(F29_IN(z1, z2))
U3'(f29_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [2] + x1 + x2   
POL(F1_IN(x1, x2)) = [2]x2   
POL(F27_IN(x1, x2, x3)) = [2] + [2]x2 + x3   
POL(F29_IN(x1, x2)) = [1]   
POL(U2(x1, x2, x3)) = x1   
POL(U3'(x1, x2, x3, x4)) = [2]x1 + x4   
POL([]) = 0   
POL(c1(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c7(x1)) = x1   
POL(f29_in(x1, x2)) = x2   
POL(f29_out1(x1)) = x1   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, []) → f1_out1
f1_in(.(z0, z1), .(z0, z2)) → U1(f27_in(z1, z2, z0), .(z0, z1), .(z0, z2))
U1(f27_out1(z0), .(z1, z2), .(z1, z3)) → f1_out1
f29_in([], z0) → f29_out1(z0)
f29_in(.(z0, z1), .(z0, z2)) → U2(f29_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f29_out1(z0), .(z1, z2), .(z1, z3)) → f29_out1(z0)
f27_in(z0, z1, z2) → U3(f29_in(z0, z1), z0, z1, z2)
U3(f29_out1(z0), z1, z2, z3) → U4(f1_in(.(z3, z1), z0), z1, z2, z3, z0)
U4(f1_out1, z0, z1, z2, z3) → f27_out1(z3)
Tuples:

F27_IN(z0, z1, z2) → c6(U3'(f29_in(z0, z1), z0, z1, z2), F29_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F27_IN(z1, z2, z0))
F29_IN(.(z0, z1), .(z0, z2)) → c4(F29_IN(z1, z2))
U3'(f29_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z0))
S tuples:

F29_IN(.(z0, z1), .(z0, z2)) → c4(F29_IN(z1, z2))
U3'(f29_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z0))
K tuples:

F27_IN(z0, z1, z2) → c6(U3'(f29_in(z0, z1), z0, z1, z2), F29_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F27_IN(z1, z2, z0))
Defined Rule Symbols:

f1_in, U1, f29_in, U2, f27_in, U3, U4

Defined Pair Symbols:

F27_IN, F1_IN, F29_IN, U3'

Compound Symbols:

c6, c1, c4, c7

(9) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

U3'(f29_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z0))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F27_IN(z1, z2, z0))

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, []) → f1_out1
f1_in(.(z0, z1), .(z0, z2)) → U1(f27_in(z1, z2, z0), .(z0, z1), .(z0, z2))
U1(f27_out1(z0), .(z1, z2), .(z1, z3)) → f1_out1
f29_in([], z0) → f29_out1(z0)
f29_in(.(z0, z1), .(z0, z2)) → U2(f29_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f29_out1(z0), .(z1, z2), .(z1, z3)) → f29_out1(z0)
f27_in(z0, z1, z2) → U3(f29_in(z0, z1), z0, z1, z2)
U3(f29_out1(z0), z1, z2, z3) → U4(f1_in(.(z3, z1), z0), z1, z2, z3, z0)
U4(f1_out1, z0, z1, z2, z3) → f27_out1(z3)
Tuples:

F27_IN(z0, z1, z2) → c6(U3'(f29_in(z0, z1), z0, z1, z2), F29_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F27_IN(z1, z2, z0))
F29_IN(.(z0, z1), .(z0, z2)) → c4(F29_IN(z1, z2))
U3'(f29_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z0))
S tuples:

F29_IN(.(z0, z1), .(z0, z2)) → c4(F29_IN(z1, z2))
K tuples:

F27_IN(z0, z1, z2) → c6(U3'(f29_in(z0, z1), z0, z1, z2), F29_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F27_IN(z1, z2, z0))
U3'(f29_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z0))
Defined Rule Symbols:

f1_in, U1, f29_in, U2, f27_in, U3, U4

Defined Pair Symbols:

F27_IN, F1_IN, F29_IN, U3'

Compound Symbols:

c6, c1, c4, c7

(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F29_IN(.(z0, z1), .(z0, z2)) → c4(F29_IN(z1, z2))
We considered the (Usable) Rules:

f29_in([], z0) → f29_out1(z0)
f29_in(.(z0, z1), .(z0, z2)) → U2(f29_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f29_out1(z0), .(z1, z2), .(z1, z3)) → f29_out1(z0)
And the Tuples:

F27_IN(z0, z1, z2) → c6(U3'(f29_in(z0, z1), z0, z1, z2), F29_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F27_IN(z1, z2, z0))
F29_IN(.(z0, z1), .(z0, z2)) → c4(F29_IN(z1, z2))
U3'(f29_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1] + x1 + x2   
POL(F1_IN(x1, x2)) = x22   
POL(F27_IN(x1, x2, x3)) = [1] + x2 + x3 + x32 + x2·x3 + x22   
POL(F29_IN(x1, x2)) = x2   
POL(U2(x1, x2, x3)) = x1   
POL(U3'(x1, x2, x3, x4)) = x1·x4 + x12   
POL([]) = 0   
POL(c1(x1)) = x1   
POL(c4(x1)) = x1   
POL(c6(x1, x2)) = x1 + x2   
POL(c7(x1)) = x1   
POL(f29_in(x1, x2)) = x2   
POL(f29_out1(x1)) = x1   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, []) → f1_out1
f1_in(.(z0, z1), .(z0, z2)) → U1(f27_in(z1, z2, z0), .(z0, z1), .(z0, z2))
U1(f27_out1(z0), .(z1, z2), .(z1, z3)) → f1_out1
f29_in([], z0) → f29_out1(z0)
f29_in(.(z0, z1), .(z0, z2)) → U2(f29_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f29_out1(z0), .(z1, z2), .(z1, z3)) → f29_out1(z0)
f27_in(z0, z1, z2) → U3(f29_in(z0, z1), z0, z1, z2)
U3(f29_out1(z0), z1, z2, z3) → U4(f1_in(.(z3, z1), z0), z1, z2, z3, z0)
U4(f1_out1, z0, z1, z2, z3) → f27_out1(z3)
Tuples:

F27_IN(z0, z1, z2) → c6(U3'(f29_in(z0, z1), z0, z1, z2), F29_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F27_IN(z1, z2, z0))
F29_IN(.(z0, z1), .(z0, z2)) → c4(F29_IN(z1, z2))
U3'(f29_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z0))
S tuples:none
K tuples:

F27_IN(z0, z1, z2) → c6(U3'(f29_in(z0, z1), z0, z1, z2), F29_IN(z0, z1))
F1_IN(.(z0, z1), .(z0, z2)) → c1(F27_IN(z1, z2, z0))
U3'(f29_out1(z0), z1, z2, z3) → c7(F1_IN(.(z3, z1), z0))
F29_IN(.(z0, z1), .(z0, z2)) → c4(F29_IN(z1, z2))
Defined Rule Symbols:

f1_in, U1, f29_in, U2, f27_in, U3, U4

Defined Pair Symbols:

F27_IN, F1_IN, F29_IN, U3'

Compound Symbols:

c6, c1, c4, c7

(13) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(14) BOUNDS(O(1), O(1))

(15) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, []) → f2_out1
f2_in(z0, z1) → U1(f26_in(z0, z1), z0, z1)
U1(f26_out1(z0), z1, z2) → f2_out1
f42_in([], z0) → f42_out1(z0)
f42_in(.(z0, z1), .(z0, z2)) → U2(f42_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f42_out1(z0), .(z1, z2), .(z1, z3)) → f42_out1(z0)
f32_in(.(z0, z1), .(z0, z2)) → U3(f42_in(z1, z2), .(z0, z1), .(z0, z2))
U3(f42_out1(z0), .(z1, z2), .(z1, z3)) → f32_out1(z0)
f26_in(z0, z1) → U4(f32_in(z0, z1), z0, z1)
U4(f32_out1(z0), z1, z2) → U5(f2_in(z1, z0), z1, z2, z0)
U5(f2_out1, z0, z1, z2) → f26_out1(z2)
Tuples:

F2_IN(z0, z1) → c1(U1'(f26_in(z0, z1), z0, z1), F26_IN(z0, z1))
F42_IN(.(z0, z1), .(z0, z2)) → c4(U2'(f42_in(z1, z2), .(z0, z1), .(z0, z2)), F42_IN(z1, z2))
F32_IN(.(z0, z1), .(z0, z2)) → c6(U3'(f42_in(z1, z2), .(z0, z1), .(z0, z2)), F42_IN(z1, z2))
F26_IN(z0, z1) → c8(U4'(f32_in(z0, z1), z0, z1), F32_IN(z0, z1))
U4'(f32_out1(z0), z1, z2) → c9(U5'(f2_in(z1, z0), z1, z2, z0), F2_IN(z1, z0))
S tuples:

F2_IN(z0, z1) → c1(U1'(f26_in(z0, z1), z0, z1), F26_IN(z0, z1))
F42_IN(.(z0, z1), .(z0, z2)) → c4(U2'(f42_in(z1, z2), .(z0, z1), .(z0, z2)), F42_IN(z1, z2))
F32_IN(.(z0, z1), .(z0, z2)) → c6(U3'(f42_in(z1, z2), .(z0, z1), .(z0, z2)), F42_IN(z1, z2))
F26_IN(z0, z1) → c8(U4'(f32_in(z0, z1), z0, z1), F32_IN(z0, z1))
U4'(f32_out1(z0), z1, z2) → c9(U5'(f2_in(z1, z0), z1, z2, z0), F2_IN(z1, z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f42_in, U2, f32_in, U3, f26_in, U4, U5

Defined Pair Symbols:

F2_IN, F42_IN, F32_IN, F26_IN, U4'

Compound Symbols:

c1, c4, c6, c8, c9

(17) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, []) → f2_out1
f2_in(z0, z1) → U1(f26_in(z0, z1), z0, z1)
U1(f26_out1(z0), z1, z2) → f2_out1
f42_in([], z0) → f42_out1(z0)
f42_in(.(z0, z1), .(z0, z2)) → U2(f42_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f42_out1(z0), .(z1, z2), .(z1, z3)) → f42_out1(z0)
f32_in(.(z0, z1), .(z0, z2)) → U3(f42_in(z1, z2), .(z0, z1), .(z0, z2))
U3(f42_out1(z0), .(z1, z2), .(z1, z3)) → f32_out1(z0)
f26_in(z0, z1) → U4(f32_in(z0, z1), z0, z1)
U4(f32_out1(z0), z1, z2) → U5(f2_in(z1, z0), z1, z2, z0)
U5(f2_out1, z0, z1, z2) → f26_out1(z2)
Tuples:

F2_IN(z0, z1) → c1(U1'(f26_in(z0, z1), z0, z1), F26_IN(z0, z1))
F42_IN(.(z0, z1), .(z0, z2)) → c4(U2'(f42_in(z1, z2), .(z0, z1), .(z0, z2)), F42_IN(z1, z2))
F26_IN(z0, z1) → c8(U4'(f32_in(z0, z1), z0, z1), F32_IN(z0, z1))
U4'(f32_out1(z0), z1, z2) → c9(U5'(f2_in(z1, z0), z1, z2, z0), F2_IN(z1, z0))
F32_IN(.(z0, z1), .(z0, z2)) → c(U3'(f42_in(z1, z2), .(z0, z1), .(z0, z2)))
F32_IN(.(z0, z1), .(z0, z2)) → c(F42_IN(z1, z2))
S tuples:

F2_IN(z0, z1) → c1(U1'(f26_in(z0, z1), z0, z1), F26_IN(z0, z1))
F42_IN(.(z0, z1), .(z0, z2)) → c4(U2'(f42_in(z1, z2), .(z0, z1), .(z0, z2)), F42_IN(z1, z2))
F26_IN(z0, z1) → c8(U4'(f32_in(z0, z1), z0, z1), F32_IN(z0, z1))
U4'(f32_out1(z0), z1, z2) → c9(U5'(f2_in(z1, z0), z1, z2, z0), F2_IN(z1, z0))
F32_IN(.(z0, z1), .(z0, z2)) → c(U3'(f42_in(z1, z2), .(z0, z1), .(z0, z2)))
F32_IN(.(z0, z1), .(z0, z2)) → c(F42_IN(z1, z2))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f42_in, U2, f32_in, U3, f26_in, U4, U5

Defined Pair Symbols:

F2_IN, F42_IN, F26_IN, U4', F32_IN

Compound Symbols:

c1, c4, c8, c9, c

(19) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, []) → f2_out1
f2_in(z0, z1) → U1(f26_in(z0, z1), z0, z1)
U1(f26_out1(z0), z1, z2) → f2_out1
f42_in([], z0) → f42_out1(z0)
f42_in(.(z0, z1), .(z0, z2)) → U2(f42_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f42_out1(z0), .(z1, z2), .(z1, z3)) → f42_out1(z0)
f32_in(.(z0, z1), .(z0, z2)) → U3(f42_in(z1, z2), .(z0, z1), .(z0, z2))
U3(f42_out1(z0), .(z1, z2), .(z1, z3)) → f32_out1(z0)
f26_in(z0, z1) → U4(f32_in(z0, z1), z0, z1)
U4(f32_out1(z0), z1, z2) → U5(f2_in(z1, z0), z1, z2, z0)
U5(f2_out1, z0, z1, z2) → f26_out1(z2)
Tuples:

F26_IN(z0, z1) → c8(U4'(f32_in(z0, z1), z0, z1), F32_IN(z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c(F42_IN(z1, z2))
F2_IN(z0, z1) → c1(F26_IN(z0, z1))
F42_IN(.(z0, z1), .(z0, z2)) → c4(F42_IN(z1, z2))
U4'(f32_out1(z0), z1, z2) → c9(F2_IN(z1, z0))
F32_IN(.(z0, z1), .(z0, z2)) → c
S tuples:

F26_IN(z0, z1) → c8(U4'(f32_in(z0, z1), z0, z1), F32_IN(z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c(F42_IN(z1, z2))
F2_IN(z0, z1) → c1(F26_IN(z0, z1))
F42_IN(.(z0, z1), .(z0, z2)) → c4(F42_IN(z1, z2))
U4'(f32_out1(z0), z1, z2) → c9(F2_IN(z1, z0))
F32_IN(.(z0, z1), .(z0, z2)) → c
K tuples:none
Defined Rule Symbols:

f2_in, U1, f42_in, U2, f32_in, U3, f26_in, U4, U5

Defined Pair Symbols:

F26_IN, F32_IN, F2_IN, F42_IN, U4'

Compound Symbols:

c8, c, c1, c4, c9, c

(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(z0, z1) → c1(F26_IN(z0, z1))
We considered the (Usable) Rules:

f32_in(.(z0, z1), .(z0, z2)) → U3(f42_in(z1, z2), .(z0, z1), .(z0, z2))
f42_in([], z0) → f42_out1(z0)
f42_in(.(z0, z1), .(z0, z2)) → U2(f42_in(z1, z2), .(z0, z1), .(z0, z2))
U3(f42_out1(z0), .(z1, z2), .(z1, z3)) → f32_out1(z0)
U2(f42_out1(z0), .(z1, z2), .(z1, z3)) → f42_out1(z0)
And the Tuples:

F26_IN(z0, z1) → c8(U4'(f32_in(z0, z1), z0, z1), F32_IN(z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c(F42_IN(z1, z2))
F2_IN(z0, z1) → c1(F26_IN(z0, z1))
F42_IN(.(z0, z1), .(z0, z2)) → c4(F42_IN(z1, z2))
U4'(f32_out1(z0), z1, z2) → c9(F2_IN(z1, z0))
F32_IN(.(z0, z1), .(z0, z2)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1] + x2   
POL(F26_IN(x1, x2)) = x2   
POL(F2_IN(x1, x2)) = [1] + x2   
POL(F32_IN(x1, x2)) = 0   
POL(F42_IN(x1, x2)) = 0   
POL(U2(x1, x2, x3)) = [1] + x1   
POL(U3(x1, x2, x3)) = [1] + x1   
POL(U4'(x1, x2, x3)) = x1   
POL([]) = 0   
POL(c) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c4(x1)) = x1   
POL(c8(x1, x2)) = x1 + x2   
POL(c9(x1)) = x1   
POL(f32_in(x1, x2)) = x2   
POL(f32_out1(x1)) = [1] + x1   
POL(f42_in(x1, x2)) = x2   
POL(f42_out1(x1)) = x1   

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, []) → f2_out1
f2_in(z0, z1) → U1(f26_in(z0, z1), z0, z1)
U1(f26_out1(z0), z1, z2) → f2_out1
f42_in([], z0) → f42_out1(z0)
f42_in(.(z0, z1), .(z0, z2)) → U2(f42_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f42_out1(z0), .(z1, z2), .(z1, z3)) → f42_out1(z0)
f32_in(.(z0, z1), .(z0, z2)) → U3(f42_in(z1, z2), .(z0, z1), .(z0, z2))
U3(f42_out1(z0), .(z1, z2), .(z1, z3)) → f32_out1(z0)
f26_in(z0, z1) → U4(f32_in(z0, z1), z0, z1)
U4(f32_out1(z0), z1, z2) → U5(f2_in(z1, z0), z1, z2, z0)
U5(f2_out1, z0, z1, z2) → f26_out1(z2)
Tuples:

F26_IN(z0, z1) → c8(U4'(f32_in(z0, z1), z0, z1), F32_IN(z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c(F42_IN(z1, z2))
F2_IN(z0, z1) → c1(F26_IN(z0, z1))
F42_IN(.(z0, z1), .(z0, z2)) → c4(F42_IN(z1, z2))
U4'(f32_out1(z0), z1, z2) → c9(F2_IN(z1, z0))
F32_IN(.(z0, z1), .(z0, z2)) → c
S tuples:

F26_IN(z0, z1) → c8(U4'(f32_in(z0, z1), z0, z1), F32_IN(z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c(F42_IN(z1, z2))
F42_IN(.(z0, z1), .(z0, z2)) → c4(F42_IN(z1, z2))
U4'(f32_out1(z0), z1, z2) → c9(F2_IN(z1, z0))
F32_IN(.(z0, z1), .(z0, z2)) → c
K tuples:

F2_IN(z0, z1) → c1(F26_IN(z0, z1))
Defined Rule Symbols:

f2_in, U1, f42_in, U2, f32_in, U3, f26_in, U4, U5

Defined Pair Symbols:

F26_IN, F32_IN, F2_IN, F42_IN, U4'

Compound Symbols:

c8, c, c1, c4, c9, c

(23) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F26_IN(z0, z1) → c8(U4'(f32_in(z0, z1), z0, z1), F32_IN(z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c(F42_IN(z1, z2))
U4'(f32_out1(z0), z1, z2) → c9(F2_IN(z1, z0))
F32_IN(.(z0, z1), .(z0, z2)) → c
F32_IN(.(z0, z1), .(z0, z2)) → c(F42_IN(z1, z2))
U4'(f32_out1(z0), z1, z2) → c9(F2_IN(z1, z0))
F32_IN(.(z0, z1), .(z0, z2)) → c
F2_IN(z0, z1) → c1(F26_IN(z0, z1))

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, []) → f2_out1
f2_in(z0, z1) → U1(f26_in(z0, z1), z0, z1)
U1(f26_out1(z0), z1, z2) → f2_out1
f42_in([], z0) → f42_out1(z0)
f42_in(.(z0, z1), .(z0, z2)) → U2(f42_in(z1, z2), .(z0, z1), .(z0, z2))
U2(f42_out1(z0), .(z1, z2), .(z1, z3)) → f42_out1(z0)
f32_in(.(z0, z1), .(z0, z2)) → U3(f42_in(z1, z2), .(z0, z1), .(z0, z2))
U3(f42_out1(z0), .(z1, z2), .(z1, z3)) → f32_out1(z0)
f26_in(z0, z1) → U4(f32_in(z0, z1), z0, z1)
U4(f32_out1(z0), z1, z2) → U5(f2_in(z1, z0), z1, z2, z0)
U5(f2_out1, z0, z1, z2) → f26_out1(z2)
Tuples:

F26_IN(z0, z1) → c8(U4'(f32_in(z0, z1), z0, z1), F32_IN(z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c(F42_IN(z1, z2))
F2_IN(z0, z1) → c1(F26_IN(z0, z1))
F42_IN(.(z0, z1), .(z0, z2)) → c4(F42_IN(z1, z2))
U4'(f32_out1(z0), z1, z2) → c9(F2_IN(z1, z0))
F32_IN(.(z0, z1), .(z0, z2)) → c
S tuples:

F42_IN(.(z0, z1), .(z0, z2)) → c4(F42_IN(z1, z2))
K tuples:

F2_IN(z0, z1) → c1(F26_IN(z0, z1))
F26_IN(z0, z1) → c8(U4'(f32_in(z0, z1), z0, z1), F32_IN(z0, z1))
F32_IN(.(z0, z1), .(z0, z2)) → c(F42_IN(z1, z2))
U4'(f32_out1(z0), z1, z2) → c9(F2_IN(z1, z0))
F32_IN(.(z0, z1), .(z0, z2)) → c
Defined Rule Symbols:

f2_in, U1, f42_in, U2, f32_in, U3, f26_in, U4, U5

Defined Pair Symbols:

F26_IN, F32_IN, F2_IN, F42_IN, U4'

Compound Symbols:

c8, c, c1, c4, c9, c