(0) Obligation:

Clauses:

p(X, Y) :- ','(q(X, Y), r(X)).
q(a, 0).
q(X, s(Y)) :- q(X, Y).
r(b) :- r(b).

Query: p(g,g)

(1) LPReorderTransformerProof (EQUIVALENT transformation)

Reordered facts before rules in definite LP [PROLOG].

(2) Obligation:

Clauses:

q(a, 0).
p(X, Y) :- ','(q(X, Y), r(X)).
q(X, s(Y)) :- q(X, Y).
r(b) :- r(b).

Query: p(g,g)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f14_in(a, 0) → f14_out1
f14_in(z0, s(z1)) → U2(f14_in(z0, z1), z0, s(z1))
U2(f14_out1, z0, s(z1)) → f14_out1
f27_inU3(f27_in)
U3(f27_out1) → f27_out1
f15_in(b) → U4(f27_in, b)
U4(f27_out1, b) → f15_out1
f6_in(z0, z1) → U5(f14_in(z0, z1), z0, z1)
U5(f14_out1, z0, z1) → U6(f15_in(z0), z0, z1)
U6(f15_out1, z0, z1) → f6_out1
Tuples:

F1_IN(z0, z1) → c(U1'(f6_in(z0, z1), z0, z1), F6_IN(z0, z1))
F14_IN(z0, s(z1)) → c3(U2'(f14_in(z0, z1), z0, s(z1)), F14_IN(z0, z1))
F27_INc5(U3'(f27_in), F27_IN)
F15_IN(b) → c7(U4'(f27_in, b), F27_IN)
F6_IN(z0, z1) → c9(U5'(f14_in(z0, z1), z0, z1), F14_IN(z0, z1))
U5'(f14_out1, z0, z1) → c10(U6'(f15_in(z0), z0, z1), F15_IN(z0))
S tuples:

F1_IN(z0, z1) → c(U1'(f6_in(z0, z1), z0, z1), F6_IN(z0, z1))
F14_IN(z0, s(z1)) → c3(U2'(f14_in(z0, z1), z0, s(z1)), F14_IN(z0, z1))
F27_INc5(U3'(f27_in), F27_IN)
F15_IN(b) → c7(U4'(f27_in, b), F27_IN)
F6_IN(z0, z1) → c9(U5'(f14_in(z0, z1), z0, z1), F14_IN(z0, z1))
U5'(f14_out1, z0, z1) → c10(U6'(f15_in(z0), z0, z1), F15_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f14_in, U2, f27_in, U3, f15_in, U4, f6_in, U5, U6

Defined Pair Symbols:

F1_IN, F14_IN, F27_IN, F15_IN, F6_IN, U5'

Compound Symbols:

c, c3, c5, c7, c9, c10

(5) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f14_in(a, 0) → f14_out1
f14_in(z0, s(z1)) → U2(f14_in(z0, z1), z0, s(z1))
U2(f14_out1, z0, s(z1)) → f14_out1
f27_inU3(f27_in)
U3(f27_out1) → f27_out1
f15_in(b) → U4(f27_in, b)
U4(f27_out1, b) → f15_out1
f6_in(z0, z1) → U5(f14_in(z0, z1), z0, z1)
U5(f14_out1, z0, z1) → U6(f15_in(z0), z0, z1)
U6(f15_out1, z0, z1) → f6_out1
Tuples:

F14_IN(z0, s(z1)) → c3(U2'(f14_in(z0, z1), z0, s(z1)), F14_IN(z0, z1))
F27_INc5(U3'(f27_in), F27_IN)
F1_IN(z0, z1) → c1(U1'(f6_in(z0, z1), z0, z1))
F1_IN(z0, z1) → c1(F6_IN(z0, z1))
F15_IN(b) → c1(U4'(f27_in, b))
F15_IN(b) → c1(F27_IN)
F6_IN(z0, z1) → c1(U5'(f14_in(z0, z1), z0, z1))
F6_IN(z0, z1) → c1(F14_IN(z0, z1))
U5'(f14_out1, z0, z1) → c1(U6'(f15_in(z0), z0, z1))
U5'(f14_out1, z0, z1) → c1(F15_IN(z0))
S tuples:

F14_IN(z0, s(z1)) → c3(U2'(f14_in(z0, z1), z0, s(z1)), F14_IN(z0, z1))
F27_INc5(U3'(f27_in), F27_IN)
F1_IN(z0, z1) → c1(U1'(f6_in(z0, z1), z0, z1))
F1_IN(z0, z1) → c1(F6_IN(z0, z1))
F15_IN(b) → c1(U4'(f27_in, b))
F15_IN(b) → c1(F27_IN)
F6_IN(z0, z1) → c1(U5'(f14_in(z0, z1), z0, z1))
F6_IN(z0, z1) → c1(F14_IN(z0, z1))
U5'(f14_out1, z0, z1) → c1(U6'(f15_in(z0), z0, z1))
U5'(f14_out1, z0, z1) → c1(F15_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f14_in, U2, f27_in, U3, f15_in, U4, f6_in, U5, U6

Defined Pair Symbols:

F14_IN, F27_IN, F1_IN, F15_IN, F6_IN, U5'

Compound Symbols:

c3, c5, c1

(7) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 5 trailing tuple parts

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f14_in(a, 0) → f14_out1
f14_in(z0, s(z1)) → U2(f14_in(z0, z1), z0, s(z1))
U2(f14_out1, z0, s(z1)) → f14_out1
f27_inU3(f27_in)
U3(f27_out1) → f27_out1
f15_in(b) → U4(f27_in, b)
U4(f27_out1, b) → f15_out1
f6_in(z0, z1) → U5(f14_in(z0, z1), z0, z1)
U5(f14_out1, z0, z1) → U6(f15_in(z0), z0, z1)
U6(f15_out1, z0, z1) → f6_out1
Tuples:

F1_IN(z0, z1) → c1(F6_IN(z0, z1))
F15_IN(b) → c1(F27_IN)
F6_IN(z0, z1) → c1(U5'(f14_in(z0, z1), z0, z1))
F6_IN(z0, z1) → c1(F14_IN(z0, z1))
U5'(f14_out1, z0, z1) → c1(F15_IN(z0))
F14_IN(z0, s(z1)) → c3(F14_IN(z0, z1))
F27_INc5(F27_IN)
F1_IN(z0, z1) → c1
F15_IN(b) → c1
U5'(f14_out1, z0, z1) → c1
S tuples:

F1_IN(z0, z1) → c1(F6_IN(z0, z1))
F15_IN(b) → c1(F27_IN)
F6_IN(z0, z1) → c1(U5'(f14_in(z0, z1), z0, z1))
F6_IN(z0, z1) → c1(F14_IN(z0, z1))
U5'(f14_out1, z0, z1) → c1(F15_IN(z0))
F14_IN(z0, s(z1)) → c3(F14_IN(z0, z1))
F27_INc5(F27_IN)
F1_IN(z0, z1) → c1
F15_IN(b) → c1
U5'(f14_out1, z0, z1) → c1
K tuples:none
Defined Rule Symbols:

f1_in, U1, f14_in, U2, f27_in, U3, f15_in, U4, f6_in, U5, U6

Defined Pair Symbols:

F1_IN, F15_IN, F6_IN, U5', F14_IN, F27_IN

Compound Symbols:

c1, c3, c5, c1

(9) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F1_IN(z0, z1) → c1(F6_IN(z0, z1))
F6_IN(z0, z1) → c1(U5'(f14_in(z0, z1), z0, z1))
F6_IN(z0, z1) → c1(F14_IN(z0, z1))
U5'(f14_out1, z0, z1) → c1(F15_IN(z0))
F1_IN(z0, z1) → c1
F15_IN(b) → c1
U5'(f14_out1, z0, z1) → c1
F6_IN(z0, z1) → c1(U5'(f14_in(z0, z1), z0, z1))
F6_IN(z0, z1) → c1(F14_IN(z0, z1))
U5'(f14_out1, z0, z1) → c1(F15_IN(z0))
U5'(f14_out1, z0, z1) → c1
F15_IN(b) → c1(F27_IN)
F15_IN(b) → c1

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f14_in(a, 0) → f14_out1
f14_in(z0, s(z1)) → U2(f14_in(z0, z1), z0, s(z1))
U2(f14_out1, z0, s(z1)) → f14_out1
f27_inU3(f27_in)
U3(f27_out1) → f27_out1
f15_in(b) → U4(f27_in, b)
U4(f27_out1, b) → f15_out1
f6_in(z0, z1) → U5(f14_in(z0, z1), z0, z1)
U5(f14_out1, z0, z1) → U6(f15_in(z0), z0, z1)
U6(f15_out1, z0, z1) → f6_out1
Tuples:

F1_IN(z0, z1) → c1(F6_IN(z0, z1))
F15_IN(b) → c1(F27_IN)
F6_IN(z0, z1) → c1(U5'(f14_in(z0, z1), z0, z1))
F6_IN(z0, z1) → c1(F14_IN(z0, z1))
U5'(f14_out1, z0, z1) → c1(F15_IN(z0))
F14_IN(z0, s(z1)) → c3(F14_IN(z0, z1))
F27_INc5(F27_IN)
F1_IN(z0, z1) → c1
F15_IN(b) → c1
U5'(f14_out1, z0, z1) → c1
S tuples:

F14_IN(z0, s(z1)) → c3(F14_IN(z0, z1))
F27_INc5(F27_IN)
K tuples:

F1_IN(z0, z1) → c1(F6_IN(z0, z1))
F6_IN(z0, z1) → c1(U5'(f14_in(z0, z1), z0, z1))
F6_IN(z0, z1) → c1(F14_IN(z0, z1))
U5'(f14_out1, z0, z1) → c1(F15_IN(z0))
F1_IN(z0, z1) → c1
F15_IN(b) → c1
U5'(f14_out1, z0, z1) → c1
F15_IN(b) → c1(F27_IN)
Defined Rule Symbols:

f1_in, U1, f14_in, U2, f27_in, U3, f15_in, U4, f6_in, U5, U6

Defined Pair Symbols:

F1_IN, F15_IN, F6_IN, U5', F14_IN, F27_IN

Compound Symbols:

c1, c3, c5, c1

(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F14_IN(z0, s(z1)) → c3(F14_IN(z0, z1))
We considered the (Usable) Rules:

f14_in(a, 0) → f14_out1
f14_in(z0, s(z1)) → U2(f14_in(z0, z1), z0, s(z1))
U2(f14_out1, z0, s(z1)) → f14_out1
And the Tuples:

F1_IN(z0, z1) → c1(F6_IN(z0, z1))
F15_IN(b) → c1(F27_IN)
F6_IN(z0, z1) → c1(U5'(f14_in(z0, z1), z0, z1))
F6_IN(z0, z1) → c1(F14_IN(z0, z1))
U5'(f14_out1, z0, z1) → c1(F15_IN(z0))
F14_IN(z0, s(z1)) → c3(F14_IN(z0, z1))
F27_INc5(F27_IN)
F1_IN(z0, z1) → c1
F15_IN(b) → c1
U5'(f14_out1, z0, z1) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [1]   
POL(F14_IN(x1, x2)) = [1] + [2]x1 + x2   
POL(F15_IN(x1)) = x1   
POL(F1_IN(x1, x2)) = [3] + [3]x1 + [2]x2   
POL(F27_IN) = 0   
POL(F6_IN(x1, x2)) = [2] + [2]x1 + x2   
POL(U2(x1, x2, x3)) = 0   
POL(U5'(x1, x2, x3)) = [2] + [2]x2 + x3   
POL(a) = [1]   
POL(b) = 0   
POL(c1) = 0   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c5(x1)) = x1   
POL(f14_in(x1, x2)) = [1] + [3]x1 + [2]x2   
POL(f14_out1) = 0   
POL(s(x1)) = [2] + x1   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f6_in(z0, z1), z0, z1)
U1(f6_out1, z0, z1) → f1_out1
f14_in(a, 0) → f14_out1
f14_in(z0, s(z1)) → U2(f14_in(z0, z1), z0, s(z1))
U2(f14_out1, z0, s(z1)) → f14_out1
f27_inU3(f27_in)
U3(f27_out1) → f27_out1
f15_in(b) → U4(f27_in, b)
U4(f27_out1, b) → f15_out1
f6_in(z0, z1) → U5(f14_in(z0, z1), z0, z1)
U5(f14_out1, z0, z1) → U6(f15_in(z0), z0, z1)
U6(f15_out1, z0, z1) → f6_out1
Tuples:

F1_IN(z0, z1) → c1(F6_IN(z0, z1))
F15_IN(b) → c1(F27_IN)
F6_IN(z0, z1) → c1(U5'(f14_in(z0, z1), z0, z1))
F6_IN(z0, z1) → c1(F14_IN(z0, z1))
U5'(f14_out1, z0, z1) → c1(F15_IN(z0))
F14_IN(z0, s(z1)) → c3(F14_IN(z0, z1))
F27_INc5(F27_IN)
F1_IN(z0, z1) → c1
F15_IN(b) → c1
U5'(f14_out1, z0, z1) → c1
S tuples:

F27_INc5(F27_IN)
K tuples:

F1_IN(z0, z1) → c1(F6_IN(z0, z1))
F6_IN(z0, z1) → c1(U5'(f14_in(z0, z1), z0, z1))
F6_IN(z0, z1) → c1(F14_IN(z0, z1))
U5'(f14_out1, z0, z1) → c1(F15_IN(z0))
F1_IN(z0, z1) → c1
F15_IN(b) → c1
U5'(f14_out1, z0, z1) → c1
F15_IN(b) → c1(F27_IN)
F14_IN(z0, s(z1)) → c3(F14_IN(z0, z1))
Defined Rule Symbols:

f1_in, U1, f14_in, U2, f27_in, U3, f15_in, U4, f6_in, U5, U6

Defined Pair Symbols:

F1_IN, F15_IN, F6_IN, U5', F14_IN, F27_IN

Compound Symbols:

c1, c3, c5, c1

(13) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1, z0, z1) → f2_out1
f5_in(a, 0) → U2(f8_in, a, 0)
f5_in(z0, s(z1)) → U3(f5_in(z0, z1), z0, s(z1))
U2(f8_out1, a, 0) → f5_out1
U2(f8_out2, a, 0) → f5_out1
U3(f5_out1, z0, s(z1)) → f5_out1
f8_inU4(f10_in, f11_in)
U4(f10_out1, z0) → f8_out1
U4(z0, f11_out1) → f8_out2
Tuples:

F2_IN(z0, z1) → c(U1'(f5_in(z0, z1), z0, z1), F5_IN(z0, z1))
F5_IN(a, 0) → c2(U2'(f8_in, a, 0), F8_IN)
F5_IN(z0, s(z1)) → c3(U3'(f5_in(z0, z1), z0, s(z1)), F5_IN(z0, z1))
F8_INc7(U4'(f10_in, f11_in))
S tuples:

F2_IN(z0, z1) → c(U1'(f5_in(z0, z1), z0, z1), F5_IN(z0, z1))
F5_IN(a, 0) → c2(U2'(f8_in, a, 0), F8_IN)
F5_IN(z0, s(z1)) → c3(U3'(f5_in(z0, z1), z0, s(z1)), F5_IN(z0, z1))
F8_INc7(U4'(f10_in, f11_in))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f5_in, U2, U3, f8_in, U4

Defined Pair Symbols:

F2_IN, F5_IN, F8_IN

Compound Symbols:

c, c2, c3, c7

(15) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1, z0, z1) → f2_out1
f5_in(a, 0) → U2(f8_in, a, 0)
f5_in(z0, s(z1)) → U3(f5_in(z0, z1), z0, s(z1))
U2(f8_out1, a, 0) → f5_out1
U2(f8_out2, a, 0) → f5_out1
U3(f5_out1, z0, s(z1)) → f5_out1
f8_inU4(f10_in, f11_in)
U4(f10_out1, z0) → f8_out1
U4(z0, f11_out1) → f8_out2
Tuples:

F5_IN(z0, s(z1)) → c3(U3'(f5_in(z0, z1), z0, s(z1)), F5_IN(z0, z1))
F8_INc7(U4'(f10_in, f11_in))
F2_IN(z0, z1) → c1(U1'(f5_in(z0, z1), z0, z1))
F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(a, 0) → c1(U2'(f8_in, a, 0))
F5_IN(a, 0) → c1(F8_IN)
S tuples:

F5_IN(z0, s(z1)) → c3(U3'(f5_in(z0, z1), z0, s(z1)), F5_IN(z0, z1))
F8_INc7(U4'(f10_in, f11_in))
F2_IN(z0, z1) → c1(U1'(f5_in(z0, z1), z0, z1))
F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(a, 0) → c1(U2'(f8_in, a, 0))
F5_IN(a, 0) → c1(F8_IN)
K tuples:none
Defined Rule Symbols:

f2_in, U1, f5_in, U2, U3, f8_in, U4

Defined Pair Symbols:

F5_IN, F8_IN, F2_IN

Compound Symbols:

c3, c7, c1

(17) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 4 trailing tuple parts

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1, z0, z1) → f2_out1
f5_in(a, 0) → U2(f8_in, a, 0)
f5_in(z0, s(z1)) → U3(f5_in(z0, z1), z0, s(z1))
U2(f8_out1, a, 0) → f5_out1
U2(f8_out2, a, 0) → f5_out1
U3(f5_out1, z0, s(z1)) → f5_out1
f8_inU4(f10_in, f11_in)
U4(f10_out1, z0) → f8_out1
U4(z0, f11_out1) → f8_out2
Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(a, 0) → c1(F8_IN)
F5_IN(z0, s(z1)) → c3(F5_IN(z0, z1))
F8_INc7
F2_IN(z0, z1) → c1
F5_IN(a, 0) → c1
S tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(a, 0) → c1(F8_IN)
F5_IN(z0, s(z1)) → c3(F5_IN(z0, z1))
F8_INc7
F2_IN(z0, z1) → c1
F5_IN(a, 0) → c1
K tuples:none
Defined Rule Symbols:

f2_in, U1, f5_in, U2, U3, f8_in, U4

Defined Pair Symbols:

F2_IN, F5_IN, F8_IN

Compound Symbols:

c1, c3, c7, c1

(19) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F2_IN(z0, z1) → c1

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1, z0, z1) → f2_out1
f5_in(a, 0) → U2(f8_in, a, 0)
f5_in(z0, s(z1)) → U3(f5_in(z0, z1), z0, s(z1))
U2(f8_out1, a, 0) → f5_out1
U2(f8_out2, a, 0) → f5_out1
U3(f5_out1, z0, s(z1)) → f5_out1
f8_inU4(f10_in, f11_in)
U4(f10_out1, z0) → f8_out1
U4(z0, f11_out1) → f8_out2
Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(a, 0) → c1(F8_IN)
F5_IN(z0, s(z1)) → c3(F5_IN(z0, z1))
F8_INc7
F2_IN(z0, z1) → c1
F5_IN(a, 0) → c1
S tuples:

F5_IN(a, 0) → c1(F8_IN)
F5_IN(z0, s(z1)) → c3(F5_IN(z0, z1))
F8_INc7
F5_IN(a, 0) → c1
K tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F2_IN(z0, z1) → c1
Defined Rule Symbols:

f2_in, U1, f5_in, U2, U3, f8_in, U4

Defined Pair Symbols:

F2_IN, F5_IN, F8_IN

Compound Symbols:

c1, c3, c7, c1

(21) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F5_IN(z0, s(z1)) → c3(F5_IN(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(a, 0) → c1(F8_IN)
F5_IN(z0, s(z1)) → c3(F5_IN(z0, z1))
F8_INc7
F2_IN(z0, z1) → c1
F5_IN(a, 0) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F2_IN(x1, x2)) = x1 + [2]x2   
POL(F5_IN(x1, x2)) = x1 + x2   
POL(F8_IN) = 0   
POL(a) = 0   
POL(c1) = 0   
POL(c1(x1)) = x1   
POL(c3(x1)) = x1   
POL(c7) = 0   
POL(s(x1)) = [2] + x1   

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1, z0, z1) → f2_out1
f5_in(a, 0) → U2(f8_in, a, 0)
f5_in(z0, s(z1)) → U3(f5_in(z0, z1), z0, s(z1))
U2(f8_out1, a, 0) → f5_out1
U2(f8_out2, a, 0) → f5_out1
U3(f5_out1, z0, s(z1)) → f5_out1
f8_inU4(f10_in, f11_in)
U4(f10_out1, z0) → f8_out1
U4(z0, f11_out1) → f8_out2
Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(a, 0) → c1(F8_IN)
F5_IN(z0, s(z1)) → c3(F5_IN(z0, z1))
F8_INc7
F2_IN(z0, z1) → c1
F5_IN(a, 0) → c1
S tuples:

F5_IN(a, 0) → c1(F8_IN)
F8_INc7
F5_IN(a, 0) → c1
K tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F2_IN(z0, z1) → c1
F5_IN(z0, s(z1)) → c3(F5_IN(z0, z1))
Defined Rule Symbols:

f2_in, U1, f5_in, U2, U3, f8_in, U4

Defined Pair Symbols:

F2_IN, F5_IN, F8_IN

Compound Symbols:

c1, c3, c7, c1

(23) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F5_IN(a, 0) → c1(F8_IN)
F8_INc7
F5_IN(a, 0) → c1
F8_INc7
Now S is empty

(24) BOUNDS(O(1), O(1))