(0) Obligation:

Clauses:

less(0, Y) :- ','(!, =(Y, s(X2))).
less(X, Y) :- ','(p(X, X1), ','(p(Y, Y1), less(X1, Y1))).
p(0, 0).
p(s(X), X).
=(X, X).

Query: less(g,a)

(1) BuiltinConflictTransformerProof (BOTH BOUNDS(ID, ID) transformation)

Renamed defined predicates conflicting with built-in predicates [PROLOG].

(2) Obligation:

Clauses:

less(0, Y) :- ','(!, user_defined_=(Y, s(X2))).
less(X, Y) :- ','(p(X, X1), ','(p(Y, Y1), less(X1, Y1))).
p(0, 0).
p(s(X), X).
user_defined_=(X, X).

Query: less(g,a)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1
f1_in(s(z0)) → U1(f31_in(z0), s(z0))
f1_in(s(z0)) → U2(f1_in(z0), s(z0))
U1(f31_out1, s(z0)) → f1_out1
U1(f31_out2, s(z0)) → f1_out1
U2(f1_out1, s(z0)) → f1_out1
f35_in(s(z0)) → U3(f64_in(z0), s(z0))
U3(f64_out1, s(z0)) → f35_out1
U3(f64_out2(z0), s(z1)) → f35_out1
f37_in(z0) → U4(f1_in(z0), z0)
U4(f1_out1, z0) → f37_out1
f31_in(z0) → U5(f35_in(z0), f37_in(z0), z0)
U5(f35_out1, z0, z1) → f31_out1
U5(z0, f37_out1, z1) → f31_out2
f64_in(z0) → U6(f35_in(z0), f68_in(z0), z0)
U6(f35_out1, z0, z1) → f64_out1
U6(z0, f68_out1(z1), z2) → f64_out2(z1)
Tuples:

F1_IN(s(z0)) → c1(U1'(f31_in(z0), s(z0)), F31_IN(z0))
F1_IN(s(z0)) → c2(U2'(f1_in(z0), s(z0)), F1_IN(z0))
F35_IN(s(z0)) → c6(U3'(f64_in(z0), s(z0)), F64_IN(z0))
F37_IN(z0) → c9(U4'(f1_in(z0), z0), F1_IN(z0))
F31_IN(z0) → c11(U5'(f35_in(z0), f37_in(z0), z0), F35_IN(z0), F37_IN(z0))
F64_IN(z0) → c14(U6'(f35_in(z0), f68_in(z0), z0), F35_IN(z0))
S tuples:

F1_IN(s(z0)) → c1(U1'(f31_in(z0), s(z0)), F31_IN(z0))
F1_IN(s(z0)) → c2(U2'(f1_in(z0), s(z0)), F1_IN(z0))
F35_IN(s(z0)) → c6(U3'(f64_in(z0), s(z0)), F64_IN(z0))
F37_IN(z0) → c9(U4'(f1_in(z0), z0), F1_IN(z0))
F31_IN(z0) → c11(U5'(f35_in(z0), f37_in(z0), z0), F35_IN(z0), F37_IN(z0))
F64_IN(z0) → c14(U6'(f35_in(z0), f68_in(z0), z0), F35_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f35_in, U3, f37_in, U4, f31_in, U5, f64_in, U6

Defined Pair Symbols:

F1_IN, F35_IN, F37_IN, F31_IN, F64_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 6 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1
f1_in(s(z0)) → U1(f31_in(z0), s(z0))
f1_in(s(z0)) → U2(f1_in(z0), s(z0))
U1(f31_out1, s(z0)) → f1_out1
U1(f31_out2, s(z0)) → f1_out1
U2(f1_out1, s(z0)) → f1_out1
f35_in(s(z0)) → U3(f64_in(z0), s(z0))
U3(f64_out1, s(z0)) → f35_out1
U3(f64_out2(z0), s(z1)) → f35_out1
f37_in(z0) → U4(f1_in(z0), z0)
U4(f1_out1, z0) → f37_out1
f31_in(z0) → U5(f35_in(z0), f37_in(z0), z0)
U5(f35_out1, z0, z1) → f31_out1
U5(z0, f37_out1, z1) → f31_out2
f64_in(z0) → U6(f35_in(z0), f68_in(z0), z0)
U6(f35_out1, z0, z1) → f64_out1
U6(z0, f68_out1(z1), z2) → f64_out2(z1)
Tuples:

F1_IN(s(z0)) → c1(F31_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F35_IN(s(z0)) → c6(F64_IN(z0))
F37_IN(z0) → c9(F1_IN(z0))
F31_IN(z0) → c11(F35_IN(z0), F37_IN(z0))
F64_IN(z0) → c14(F35_IN(z0))
S tuples:

F1_IN(s(z0)) → c1(F31_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F35_IN(s(z0)) → c6(F64_IN(z0))
F37_IN(z0) → c9(F1_IN(z0))
F31_IN(z0) → c11(F35_IN(z0), F37_IN(z0))
F64_IN(z0) → c14(F35_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, U2, f35_in, U3, f37_in, U4, f31_in, U5, f64_in, U6

Defined Pair Symbols:

F1_IN, F35_IN, F37_IN, F31_IN, F64_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F1_IN(s(z0)) → c1(F31_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(s(z0)) → c1(F31_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F35_IN(s(z0)) → c6(F64_IN(z0))
F37_IN(z0) → c9(F1_IN(z0))
F31_IN(z0) → c11(F35_IN(z0), F37_IN(z0))
F64_IN(z0) → c14(F35_IN(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F1_IN(x1)) = x1   
POL(F31_IN(x1)) = x1   
POL(F35_IN(x1)) = 0   
POL(F37_IN(x1)) = x1   
POL(F64_IN(x1)) = 0   
POL(c1(x1)) = x1   
POL(c11(x1, x2)) = x1 + x2   
POL(c14(x1)) = x1   
POL(c2(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(s(x1)) = [1] + x1   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1
f1_in(s(z0)) → U1(f31_in(z0), s(z0))
f1_in(s(z0)) → U2(f1_in(z0), s(z0))
U1(f31_out1, s(z0)) → f1_out1
U1(f31_out2, s(z0)) → f1_out1
U2(f1_out1, s(z0)) → f1_out1
f35_in(s(z0)) → U3(f64_in(z0), s(z0))
U3(f64_out1, s(z0)) → f35_out1
U3(f64_out2(z0), s(z1)) → f35_out1
f37_in(z0) → U4(f1_in(z0), z0)
U4(f1_out1, z0) → f37_out1
f31_in(z0) → U5(f35_in(z0), f37_in(z0), z0)
U5(f35_out1, z0, z1) → f31_out1
U5(z0, f37_out1, z1) → f31_out2
f64_in(z0) → U6(f35_in(z0), f68_in(z0), z0)
U6(f35_out1, z0, z1) → f64_out1
U6(z0, f68_out1(z1), z2) → f64_out2(z1)
Tuples:

F1_IN(s(z0)) → c1(F31_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F35_IN(s(z0)) → c6(F64_IN(z0))
F37_IN(z0) → c9(F1_IN(z0))
F31_IN(z0) → c11(F35_IN(z0), F37_IN(z0))
F64_IN(z0) → c14(F35_IN(z0))
S tuples:

F35_IN(s(z0)) → c6(F64_IN(z0))
F37_IN(z0) → c9(F1_IN(z0))
F31_IN(z0) → c11(F35_IN(z0), F37_IN(z0))
F64_IN(z0) → c14(F35_IN(z0))
K tuples:

F1_IN(s(z0)) → c1(F31_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
Defined Rule Symbols:

f1_in, U1, U2, f35_in, U3, f37_in, U4, f31_in, U5, f64_in, U6

Defined Pair Symbols:

F1_IN, F35_IN, F37_IN, F31_IN, F64_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(9) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F31_IN(z0) → c11(F35_IN(z0), F37_IN(z0))
F37_IN(z0) → c9(F1_IN(z0))
F1_IN(s(z0)) → c1(F31_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1
f1_in(s(z0)) → U1(f31_in(z0), s(z0))
f1_in(s(z0)) → U2(f1_in(z0), s(z0))
U1(f31_out1, s(z0)) → f1_out1
U1(f31_out2, s(z0)) → f1_out1
U2(f1_out1, s(z0)) → f1_out1
f35_in(s(z0)) → U3(f64_in(z0), s(z0))
U3(f64_out1, s(z0)) → f35_out1
U3(f64_out2(z0), s(z1)) → f35_out1
f37_in(z0) → U4(f1_in(z0), z0)
U4(f1_out1, z0) → f37_out1
f31_in(z0) → U5(f35_in(z0), f37_in(z0), z0)
U5(f35_out1, z0, z1) → f31_out1
U5(z0, f37_out1, z1) → f31_out2
f64_in(z0) → U6(f35_in(z0), f68_in(z0), z0)
U6(f35_out1, z0, z1) → f64_out1
U6(z0, f68_out1(z1), z2) → f64_out2(z1)
Tuples:

F1_IN(s(z0)) → c1(F31_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F35_IN(s(z0)) → c6(F64_IN(z0))
F37_IN(z0) → c9(F1_IN(z0))
F31_IN(z0) → c11(F35_IN(z0), F37_IN(z0))
F64_IN(z0) → c14(F35_IN(z0))
S tuples:

F35_IN(s(z0)) → c6(F64_IN(z0))
F64_IN(z0) → c14(F35_IN(z0))
K tuples:

F1_IN(s(z0)) → c1(F31_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F31_IN(z0) → c11(F35_IN(z0), F37_IN(z0))
F37_IN(z0) → c9(F1_IN(z0))
Defined Rule Symbols:

f1_in, U1, U2, f35_in, U3, f37_in, U4, f31_in, U5, f64_in, U6

Defined Pair Symbols:

F1_IN, F35_IN, F37_IN, F31_IN, F64_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F35_IN(s(z0)) → c6(F64_IN(z0))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(s(z0)) → c1(F31_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F35_IN(s(z0)) → c6(F64_IN(z0))
F37_IN(z0) → c9(F1_IN(z0))
F31_IN(z0) → c11(F35_IN(z0), F37_IN(z0))
F64_IN(z0) → c14(F35_IN(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F1_IN(x1)) = x12   
POL(F31_IN(x1)) = x1 + x12   
POL(F35_IN(x1)) = x1   
POL(F37_IN(x1)) = x12   
POL(F64_IN(x1)) = x1   
POL(c1(x1)) = x1   
POL(c11(x1, x2)) = x1 + x2   
POL(c14(x1)) = x1   
POL(c2(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(s(x1)) = [1] + x1   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(0) → f1_out1
f1_in(s(z0)) → U1(f31_in(z0), s(z0))
f1_in(s(z0)) → U2(f1_in(z0), s(z0))
U1(f31_out1, s(z0)) → f1_out1
U1(f31_out2, s(z0)) → f1_out1
U2(f1_out1, s(z0)) → f1_out1
f35_in(s(z0)) → U3(f64_in(z0), s(z0))
U3(f64_out1, s(z0)) → f35_out1
U3(f64_out2(z0), s(z1)) → f35_out1
f37_in(z0) → U4(f1_in(z0), z0)
U4(f1_out1, z0) → f37_out1
f31_in(z0) → U5(f35_in(z0), f37_in(z0), z0)
U5(f35_out1, z0, z1) → f31_out1
U5(z0, f37_out1, z1) → f31_out2
f64_in(z0) → U6(f35_in(z0), f68_in(z0), z0)
U6(f35_out1, z0, z1) → f64_out1
U6(z0, f68_out1(z1), z2) → f64_out2(z1)
Tuples:

F1_IN(s(z0)) → c1(F31_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F35_IN(s(z0)) → c6(F64_IN(z0))
F37_IN(z0) → c9(F1_IN(z0))
F31_IN(z0) → c11(F35_IN(z0), F37_IN(z0))
F64_IN(z0) → c14(F35_IN(z0))
S tuples:

F64_IN(z0) → c14(F35_IN(z0))
K tuples:

F1_IN(s(z0)) → c1(F31_IN(z0))
F1_IN(s(z0)) → c2(F1_IN(z0))
F31_IN(z0) → c11(F35_IN(z0), F37_IN(z0))
F37_IN(z0) → c9(F1_IN(z0))
F35_IN(s(z0)) → c6(F64_IN(z0))
Defined Rule Symbols:

f1_in, U1, U2, f35_in, U3, f37_in, U4, f31_in, U5, f64_in, U6

Defined Pair Symbols:

F1_IN, F35_IN, F37_IN, F31_IN, F64_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(13) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F64_IN(z0) → c14(F35_IN(z0))
F35_IN(s(z0)) → c6(F64_IN(z0))
Now S is empty

(14) BOUNDS(O(1), O(1))

(15) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1
f2_in(s(z0)) → U1(f32_in(z0), s(z0))
f2_in(s(z0)) → U2(f2_in(z0), s(z0))
U1(f32_out1, s(z0)) → f2_out1
U1(f32_out2, s(z0)) → f2_out1
U2(f2_out1, s(z0)) → f2_out1
f36_in(s(z0)) → U3(f63_in(z0), s(z0))
U3(f63_out1, s(z0)) → f36_out1
U3(f63_out2(z0), s(z1)) → f36_out1
f38_in(z0) → U4(f2_in(z0), z0)
U4(f2_out1, z0) → f38_out1
f32_in(z0) → U5(f36_in(z0), f38_in(z0), z0)
U5(f36_out1, z0, z1) → f32_out1
U5(z0, f38_out1, z1) → f32_out2
f63_in(z0) → U6(f36_in(z0), f66_in(z0), z0)
U6(f36_out1, z0, z1) → f63_out1
U6(z0, f66_out1(z1), z2) → f63_out2(z1)
Tuples:

F2_IN(s(z0)) → c1(U1'(f32_in(z0), s(z0)), F32_IN(z0))
F2_IN(s(z0)) → c2(U2'(f2_in(z0), s(z0)), F2_IN(z0))
F36_IN(s(z0)) → c6(U3'(f63_in(z0), s(z0)), F63_IN(z0))
F38_IN(z0) → c9(U4'(f2_in(z0), z0), F2_IN(z0))
F32_IN(z0) → c11(U5'(f36_in(z0), f38_in(z0), z0), F36_IN(z0), F38_IN(z0))
F63_IN(z0) → c14(U6'(f36_in(z0), f66_in(z0), z0), F36_IN(z0))
S tuples:

F2_IN(s(z0)) → c1(U1'(f32_in(z0), s(z0)), F32_IN(z0))
F2_IN(s(z0)) → c2(U2'(f2_in(z0), s(z0)), F2_IN(z0))
F36_IN(s(z0)) → c6(U3'(f63_in(z0), s(z0)), F63_IN(z0))
F38_IN(z0) → c9(U4'(f2_in(z0), z0), F2_IN(z0))
F32_IN(z0) → c11(U5'(f36_in(z0), f38_in(z0), z0), F36_IN(z0), F38_IN(z0))
F63_IN(z0) → c14(U6'(f36_in(z0), f66_in(z0), z0), F36_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2, f36_in, U3, f38_in, U4, f32_in, U5, f63_in, U6

Defined Pair Symbols:

F2_IN, F36_IN, F38_IN, F32_IN, F63_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(17) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 6 trailing tuple parts

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1
f2_in(s(z0)) → U1(f32_in(z0), s(z0))
f2_in(s(z0)) → U2(f2_in(z0), s(z0))
U1(f32_out1, s(z0)) → f2_out1
U1(f32_out2, s(z0)) → f2_out1
U2(f2_out1, s(z0)) → f2_out1
f36_in(s(z0)) → U3(f63_in(z0), s(z0))
U3(f63_out1, s(z0)) → f36_out1
U3(f63_out2(z0), s(z1)) → f36_out1
f38_in(z0) → U4(f2_in(z0), z0)
U4(f2_out1, z0) → f38_out1
f32_in(z0) → U5(f36_in(z0), f38_in(z0), z0)
U5(f36_out1, z0, z1) → f32_out1
U5(z0, f38_out1, z1) → f32_out2
f63_in(z0) → U6(f36_in(z0), f66_in(z0), z0)
U6(f36_out1, z0, z1) → f63_out1
U6(z0, f66_out1(z1), z2) → f63_out2(z1)
Tuples:

F2_IN(s(z0)) → c1(F32_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F36_IN(s(z0)) → c6(F63_IN(z0))
F38_IN(z0) → c9(F2_IN(z0))
F32_IN(z0) → c11(F36_IN(z0), F38_IN(z0))
F63_IN(z0) → c14(F36_IN(z0))
S tuples:

F2_IN(s(z0)) → c1(F32_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F36_IN(s(z0)) → c6(F63_IN(z0))
F38_IN(z0) → c9(F2_IN(z0))
F32_IN(z0) → c11(F36_IN(z0), F38_IN(z0))
F63_IN(z0) → c14(F36_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, U2, f36_in, U3, f38_in, U4, f32_in, U5, f63_in, U6

Defined Pair Symbols:

F2_IN, F36_IN, F38_IN, F32_IN, F63_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(s(z0)) → c1(F32_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(s(z0)) → c1(F32_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F36_IN(s(z0)) → c6(F63_IN(z0))
F38_IN(z0) → c9(F2_IN(z0))
F32_IN(z0) → c11(F36_IN(z0), F38_IN(z0))
F63_IN(z0) → c14(F36_IN(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(F2_IN(x1)) = x1   
POL(F32_IN(x1)) = x1   
POL(F36_IN(x1)) = 0   
POL(F38_IN(x1)) = x1   
POL(F63_IN(x1)) = 0   
POL(c1(x1)) = x1   
POL(c11(x1, x2)) = x1 + x2   
POL(c14(x1)) = x1   
POL(c2(x1)) = x1   
POL(c6(x1)) = x1   
POL(c9(x1)) = x1   
POL(s(x1)) = [1] + x1   

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1
f2_in(s(z0)) → U1(f32_in(z0), s(z0))
f2_in(s(z0)) → U2(f2_in(z0), s(z0))
U1(f32_out1, s(z0)) → f2_out1
U1(f32_out2, s(z0)) → f2_out1
U2(f2_out1, s(z0)) → f2_out1
f36_in(s(z0)) → U3(f63_in(z0), s(z0))
U3(f63_out1, s(z0)) → f36_out1
U3(f63_out2(z0), s(z1)) → f36_out1
f38_in(z0) → U4(f2_in(z0), z0)
U4(f2_out1, z0) → f38_out1
f32_in(z0) → U5(f36_in(z0), f38_in(z0), z0)
U5(f36_out1, z0, z1) → f32_out1
U5(z0, f38_out1, z1) → f32_out2
f63_in(z0) → U6(f36_in(z0), f66_in(z0), z0)
U6(f36_out1, z0, z1) → f63_out1
U6(z0, f66_out1(z1), z2) → f63_out2(z1)
Tuples:

F2_IN(s(z0)) → c1(F32_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F36_IN(s(z0)) → c6(F63_IN(z0))
F38_IN(z0) → c9(F2_IN(z0))
F32_IN(z0) → c11(F36_IN(z0), F38_IN(z0))
F63_IN(z0) → c14(F36_IN(z0))
S tuples:

F36_IN(s(z0)) → c6(F63_IN(z0))
F38_IN(z0) → c9(F2_IN(z0))
F32_IN(z0) → c11(F36_IN(z0), F38_IN(z0))
F63_IN(z0) → c14(F36_IN(z0))
K tuples:

F2_IN(s(z0)) → c1(F32_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
Defined Rule Symbols:

f2_in, U1, U2, f36_in, U3, f38_in, U4, f32_in, U5, f63_in, U6

Defined Pair Symbols:

F2_IN, F36_IN, F38_IN, F32_IN, F63_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14

(21) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F32_IN(z0) → c11(F36_IN(z0), F38_IN(z0))
F38_IN(z0) → c9(F2_IN(z0))
F2_IN(s(z0)) → c1(F32_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(0) → f2_out1
f2_in(s(z0)) → U1(f32_in(z0), s(z0))
f2_in(s(z0)) → U2(f2_in(z0), s(z0))
U1(f32_out1, s(z0)) → f2_out1
U1(f32_out2, s(z0)) → f2_out1
U2(f2_out1, s(z0)) → f2_out1
f36_in(s(z0)) → U3(f63_in(z0), s(z0))
U3(f63_out1, s(z0)) → f36_out1
U3(f63_out2(z0), s(z1)) → f36_out1
f38_in(z0) → U4(f2_in(z0), z0)
U4(f2_out1, z0) → f38_out1
f32_in(z0) → U5(f36_in(z0), f38_in(z0), z0)
U5(f36_out1, z0, z1) → f32_out1
U5(z0, f38_out1, z1) → f32_out2
f63_in(z0) → U6(f36_in(z0), f66_in(z0), z0)
U6(f36_out1, z0, z1) → f63_out1
U6(z0, f66_out1(z1), z2) → f63_out2(z1)
Tuples:

F2_IN(s(z0)) → c1(F32_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F36_IN(s(z0)) → c6(F63_IN(z0))
F38_IN(z0) → c9(F2_IN(z0))
F32_IN(z0) → c11(F36_IN(z0), F38_IN(z0))
F63_IN(z0) → c14(F36_IN(z0))
S tuples:

F36_IN(s(z0)) → c6(F63_IN(z0))
F63_IN(z0) → c14(F36_IN(z0))
K tuples:

F2_IN(s(z0)) → c1(F32_IN(z0))
F2_IN(s(z0)) → c2(F2_IN(z0))
F32_IN(z0) → c11(F36_IN(z0), F38_IN(z0))
F38_IN(z0) → c9(F2_IN(z0))
Defined Rule Symbols:

f2_in, U1, U2, f36_in, U3, f38_in, U4, f32_in, U5, f63_in, U6

Defined Pair Symbols:

F2_IN, F36_IN, F38_IN, F32_IN, F63_IN

Compound Symbols:

c1, c2, c6, c9, c11, c14