(0) Obligation:

Clauses:

append(X, Y, Z) :- ','(=(X, []), ','(!, =(Y, Z))).
append(X, Y, Z) :- ','(=(X, .(H, Xs)), ','(!, ','(=(Z, .(H, Zs)), append(Xs, Y, Zs)))).
=(X, X).

Query: append(g,a,a)

(1) BuiltinConflictTransformerProof (BOTH BOUNDS(ID, ID) transformation)

Renamed defined predicates conflicting with built-in predicates [PROLOG].

(2) Obligation:

Clauses:

append(X, Y, Z) :- ','(user_defined_=(X, []), ','(!, user_defined_=(Y, Z))).
append(X, Y, Z) :- ','(user_defined_=(X, .(H, Xs)), ','(!, ','(user_defined_=(Z, .(H, Zs)), append(Xs, Y, Zs)))).
user_defined_=(X, X).

Query: append(g,a,a)

(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([]) → f2_out1
f2_in(.(z0, z1)) → U1(f2_in(z1), .(z0, z1))
U1(f2_out1, .(z0, z1)) → f2_out1
Tuples:

F2_IN(.(z0, z1)) → c1(U1'(f2_in(z1), .(z0, z1)), F2_IN(z1))
S tuples:

F2_IN(.(z0, z1)) → c1(U1'(f2_in(z1), .(z0, z1)), F2_IN(z1))
K tuples:none
Defined Rule Symbols:

f2_in, U1

Defined Pair Symbols:

F2_IN

Compound Symbols:

c1

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([]) → f2_out1
f2_in(.(z0, z1)) → U1(f2_in(z1), .(z0, z1))
U1(f2_out1, .(z0, z1)) → f2_out1
Tuples:

F2_IN(.(z0, z1)) → c1(F2_IN(z1))
S tuples:

F2_IN(.(z0, z1)) → c1(F2_IN(z1))
K tuples:none
Defined Rule Symbols:

f2_in, U1

Defined Pair Symbols:

F2_IN

Compound Symbols:

c1

(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F2_IN(.(z0, z1)) → c1(F2_IN(z1))
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(.(z0, z1)) → c1(F2_IN(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1] + x2   
POL(F2_IN(x1)) = x1   
POL(c1(x1)) = x1   

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in([]) → f2_out1
f2_in(.(z0, z1)) → U1(f2_in(z1), .(z0, z1))
U1(f2_out1, .(z0, z1)) → f2_out1
Tuples:

F2_IN(.(z0, z1)) → c1(F2_IN(z1))
S tuples:none
K tuples:

F2_IN(.(z0, z1)) → c1(F2_IN(z1))
Defined Rule Symbols:

f2_in, U1

Defined Pair Symbols:

F2_IN

Compound Symbols:

c1

(9) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(10) BOUNDS(O(1), O(1))

(11) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([]) → f1_out1
f1_in(.(z0, z1)) → U1(f1_in(z1), .(z0, z1))
U1(f1_out1, .(z0, z1)) → f1_out1
Tuples:

F1_IN(.(z0, z1)) → c1(U1'(f1_in(z1), .(z0, z1)), F1_IN(z1))
S tuples:

F1_IN(.(z0, z1)) → c1(U1'(f1_in(z1), .(z0, z1)), F1_IN(z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1

(13) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([]) → f1_out1
f1_in(.(z0, z1)) → U1(f1_in(z1), .(z0, z1))
U1(f1_out1, .(z0, z1)) → f1_out1
Tuples:

F1_IN(.(z0, z1)) → c1(F1_IN(z1))
S tuples:

F1_IN(.(z0, z1)) → c1(F1_IN(z1))
K tuples:none
Defined Rule Symbols:

f1_in, U1

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1

(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F1_IN(.(z0, z1)) → c1(F1_IN(z1))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(.(z0, z1)) → c1(F1_IN(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(.(x1, x2)) = [1] + x2   
POL(F1_IN(x1)) = x1   
POL(c1(x1)) = x1   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in([]) → f1_out1
f1_in(.(z0, z1)) → U1(f1_in(z1), .(z0, z1))
U1(f1_out1, .(z0, z1)) → f1_out1
Tuples:

F1_IN(.(z0, z1)) → c1(F1_IN(z1))
S tuples:none
K tuples:

F1_IN(.(z0, z1)) → c1(F1_IN(z1))
Defined Rule Symbols:

f1_in, U1

Defined Pair Symbols:

F1_IN

Compound Symbols:

c1