(0) Obligation:
Clauses:
p(X, Y, Z) :- ','(=(X, Y), ','(=(Z, 1), !)).
p(X, Y, Z) :- ','(=(Z, 1), ','(=(Y, X), p(X, Y, Z))).
=(X, X).
Query: p(a,a,a)
(1) BuiltinConflictTransformerProof (BOTH BOUNDS(ID, ID) transformation)
Renamed defined predicates conflicting with built-in predicates [PROLOG].
(2) Obligation:
Clauses:
p(X, Y, Z) :- ','(user_defined_=(X, Y), ','(user_defined_=(Z, 1), !)).
p(X, Y, Z) :- ','(user_defined_=(Z, 1), ','(user_defined_=(Y, X), p(X, Y, Z))).
user_defined_=(X, X).
Query: p(a,a,a)
(3) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in → f2_out1(1)
f2_in → U1(f39_in)
f2_in → U2(f39_in)
U1(f39_out1) → f2_out1(1)
U2(f39_out1) → f2_out1(1)
f39_in → f39_out1
Tuples:
F2_IN → c1(U1'(f39_in), F39_IN)
F2_IN → c2(U2'(f39_in), F39_IN)
S tuples:
F2_IN → c1(U1'(f39_in), F39_IN)
F2_IN → c2(U2'(f39_in), F39_IN)
K tuples:none
Defined Rule Symbols:
f2_in, U1, U2, f39_in
Defined Pair Symbols:
F2_IN
Compound Symbols:
c1, c2
(5) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in → f2_out1(1)
f2_in → U1(f39_in)
f2_in → U2(f39_in)
U1(f39_out1) → f2_out1(1)
U2(f39_out1) → f2_out1(1)
f39_in → f39_out1
Tuples:
F2_IN → c(U1'(f39_in))
F2_IN → c(F39_IN)
F2_IN → c(U2'(f39_in))
S tuples:
F2_IN → c(U1'(f39_in))
F2_IN → c(F39_IN)
F2_IN → c(U2'(f39_in))
K tuples:none
Defined Rule Symbols:
f2_in, U1, U2, f39_in
Defined Pair Symbols:
F2_IN
Compound Symbols:
c
(7) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f2_in → f2_out1(1)
f2_in → U1(f39_in)
f2_in → U2(f39_in)
U1(f39_out1) → f2_out1(1)
U2(f39_out1) → f2_out1(1)
f39_in → f39_out1
Tuples:
F2_IN → c
S tuples:
F2_IN → c
K tuples:none
Defined Rule Symbols:
f2_in, U1, U2, f39_in
Defined Pair Symbols:
F2_IN
Compound Symbols:
c
(9) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F2_IN → c
F2_IN → c
F2_IN → c
F2_IN → c
Now S is empty
(10) BOUNDS(O(1), O(1))
(11) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)
Built complexity over-approximating cdt problems from derivation graph.
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in → f1_out1(1)
f1_in → U1(f36_in)
f1_in → U2(f36_in)
U1(f36_out1) → f1_out1(1)
U2(f36_out1) → f1_out1(1)
f36_in → f36_out1
Tuples:
F1_IN → c1(U1'(f36_in), F36_IN)
F1_IN → c2(U2'(f36_in), F36_IN)
S tuples:
F1_IN → c1(U1'(f36_in), F36_IN)
F1_IN → c2(U2'(f36_in), F36_IN)
K tuples:none
Defined Rule Symbols:
f1_in, U1, U2, f36_in
Defined Pair Symbols:
F1_IN
Compound Symbols:
c1, c2
(13) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in → f1_out1(1)
f1_in → U1(f36_in)
f1_in → U2(f36_in)
U1(f36_out1) → f1_out1(1)
U2(f36_out1) → f1_out1(1)
f36_in → f36_out1
Tuples:
F1_IN → c(U1'(f36_in))
F1_IN → c(F36_IN)
F1_IN → c(U2'(f36_in))
S tuples:
F1_IN → c(U1'(f36_in))
F1_IN → c(F36_IN)
F1_IN → c(U2'(f36_in))
K tuples:none
Defined Rule Symbols:
f1_in, U1, U2, f36_in
Defined Pair Symbols:
F1_IN
Compound Symbols:
c
(15) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
f1_in → f1_out1(1)
f1_in → U1(f36_in)
f1_in → U2(f36_in)
U1(f36_out1) → f1_out1(1)
U2(f36_out1) → f1_out1(1)
f36_in → f36_out1
Tuples:
F1_IN → c
S tuples:
F1_IN → c
K tuples:none
Defined Rule Symbols:
f1_in, U1, U2, f36_in
Defined Pair Symbols:
F1_IN
Compound Symbols:
c