(0) Obligation:

Clauses:

q(X, Y) :- m(X, Y, Z).
m(X, 0, X).
m(0, Y, 0) :- !.
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(X), X).

Query: q(g,g)

(1) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f7_in(z0, z1), z0, z1)
U1(f7_out1(z0), z1, z2) → f1_out1
f7_in(z0, 0) → f7_out1(z0)
f7_in(0, 0) → f7_out1(0)
f7_in(s(z0), 0) → U2(f45_in(z0), s(z0), 0)
f7_in(0, z0) → f7_out1(0)
f7_in(s(z0), s(z1)) → U3(f7_in(z0, z1), s(z0), s(z1))
U2(f45_out1(z0), s(z1), 0) → f7_out1(z0)
U2(f45_out2(z0, z1), s(z2), 0) → f7_out1(z1)
U3(f7_out1(z0), s(z1), s(z2)) → f7_out1(z0)
f46_in(z0) → f46_out1(z0)
f46_in(0) → f46_out1(0)
f46_in(s(z0)) → U4(f77_in(z0), s(z0))
U4(f77_out1(z0), s(z1)) → f46_out1(z0)
U4(f77_out2(z0, z1), s(z2)) → f46_out1(z1)
f45_in(z0) → U5(f46_in(z0), f47_in(z0), z0)
U5(f46_out1(z0), z1, z2) → f45_out1(z0)
U5(z0, f47_out1(z1, z2), z3) → f45_out2(z1, z2)
f77_in(z0) → U6(f46_in(z0), f79_in(z0), z0)
U6(f46_out1(z0), z1, z2) → f77_out1(z0)
U6(z0, f79_out1(z1, z2), z3) → f77_out2(z1, z2)
Tuples:

F1_IN(z0, z1) → c(U1'(f7_in(z0, z1), z0, z1), F7_IN(z0, z1))
F7_IN(s(z0), 0) → c4(U2'(f45_in(z0), s(z0), 0), F45_IN(z0))
F7_IN(s(z0), s(z1)) → c6(U3'(f7_in(z0, z1), s(z0), s(z1)), F7_IN(z0, z1))
F46_IN(s(z0)) → c12(U4'(f77_in(z0), s(z0)), F77_IN(z0))
F45_IN(z0) → c15(U5'(f46_in(z0), f47_in(z0), z0), F46_IN(z0))
F77_IN(z0) → c18(U6'(f46_in(z0), f79_in(z0), z0), F46_IN(z0))
S tuples:

F1_IN(z0, z1) → c(U1'(f7_in(z0, z1), z0, z1), F7_IN(z0, z1))
F7_IN(s(z0), 0) → c4(U2'(f45_in(z0), s(z0), 0), F45_IN(z0))
F7_IN(s(z0), s(z1)) → c6(U3'(f7_in(z0, z1), s(z0), s(z1)), F7_IN(z0, z1))
F46_IN(s(z0)) → c12(U4'(f77_in(z0), s(z0)), F77_IN(z0))
F45_IN(z0) → c15(U5'(f46_in(z0), f47_in(z0), z0), F46_IN(z0))
F77_IN(z0) → c18(U6'(f46_in(z0), f79_in(z0), z0), F46_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f46_in, U4, f45_in, U5, f77_in, U6

Defined Pair Symbols:

F1_IN, F7_IN, F46_IN, F45_IN, F77_IN

Compound Symbols:

c, c4, c6, c12, c15, c18

(3) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f7_in(z0, z1), z0, z1)
U1(f7_out1(z0), z1, z2) → f1_out1
f7_in(z0, 0) → f7_out1(z0)
f7_in(0, 0) → f7_out1(0)
f7_in(s(z0), 0) → U2(f45_in(z0), s(z0), 0)
f7_in(0, z0) → f7_out1(0)
f7_in(s(z0), s(z1)) → U3(f7_in(z0, z1), s(z0), s(z1))
U2(f45_out1(z0), s(z1), 0) → f7_out1(z0)
U2(f45_out2(z0, z1), s(z2), 0) → f7_out1(z1)
U3(f7_out1(z0), s(z1), s(z2)) → f7_out1(z0)
f46_in(z0) → f46_out1(z0)
f46_in(0) → f46_out1(0)
f46_in(s(z0)) → U4(f77_in(z0), s(z0))
U4(f77_out1(z0), s(z1)) → f46_out1(z0)
U4(f77_out2(z0, z1), s(z2)) → f46_out1(z1)
f45_in(z0) → U5(f46_in(z0), f47_in(z0), z0)
U5(f46_out1(z0), z1, z2) → f45_out1(z0)
U5(z0, f47_out1(z1, z2), z3) → f45_out2(z1, z2)
f77_in(z0) → U6(f46_in(z0), f79_in(z0), z0)
U6(f46_out1(z0), z1, z2) → f77_out1(z0)
U6(z0, f79_out1(z1, z2), z3) → f77_out2(z1, z2)
Tuples:

F7_IN(s(z0), s(z1)) → c6(U3'(f7_in(z0, z1), s(z0), s(z1)), F7_IN(z0, z1))
F46_IN(s(z0)) → c12(U4'(f77_in(z0), s(z0)), F77_IN(z0))
F77_IN(z0) → c18(U6'(f46_in(z0), f79_in(z0), z0), F46_IN(z0))
F1_IN(z0, z1) → c1(U1'(f7_in(z0, z1), z0, z1))
F1_IN(z0, z1) → c1(F7_IN(z0, z1))
F7_IN(s(z0), 0) → c1(U2'(f45_in(z0), s(z0), 0))
F7_IN(s(z0), 0) → c1(F45_IN(z0))
F45_IN(z0) → c1(U5'(f46_in(z0), f47_in(z0), z0))
F45_IN(z0) → c1(F46_IN(z0))
S tuples:

F7_IN(s(z0), s(z1)) → c6(U3'(f7_in(z0, z1), s(z0), s(z1)), F7_IN(z0, z1))
F46_IN(s(z0)) → c12(U4'(f77_in(z0), s(z0)), F77_IN(z0))
F77_IN(z0) → c18(U6'(f46_in(z0), f79_in(z0), z0), F46_IN(z0))
F1_IN(z0, z1) → c1(U1'(f7_in(z0, z1), z0, z1))
F1_IN(z0, z1) → c1(F7_IN(z0, z1))
F7_IN(s(z0), 0) → c1(U2'(f45_in(z0), s(z0), 0))
F7_IN(s(z0), 0) → c1(F45_IN(z0))
F45_IN(z0) → c1(U5'(f46_in(z0), f47_in(z0), z0))
F45_IN(z0) → c1(F46_IN(z0))
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f46_in, U4, f45_in, U5, f77_in, U6

Defined Pair Symbols:

F7_IN, F46_IN, F77_IN, F1_IN, F45_IN

Compound Symbols:

c6, c12, c18, c1

(5) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 6 trailing tuple parts

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f7_in(z0, z1), z0, z1)
U1(f7_out1(z0), z1, z2) → f1_out1
f7_in(z0, 0) → f7_out1(z0)
f7_in(0, 0) → f7_out1(0)
f7_in(s(z0), 0) → U2(f45_in(z0), s(z0), 0)
f7_in(0, z0) → f7_out1(0)
f7_in(s(z0), s(z1)) → U3(f7_in(z0, z1), s(z0), s(z1))
U2(f45_out1(z0), s(z1), 0) → f7_out1(z0)
U2(f45_out2(z0, z1), s(z2), 0) → f7_out1(z1)
U3(f7_out1(z0), s(z1), s(z2)) → f7_out1(z0)
f46_in(z0) → f46_out1(z0)
f46_in(0) → f46_out1(0)
f46_in(s(z0)) → U4(f77_in(z0), s(z0))
U4(f77_out1(z0), s(z1)) → f46_out1(z0)
U4(f77_out2(z0, z1), s(z2)) → f46_out1(z1)
f45_in(z0) → U5(f46_in(z0), f47_in(z0), z0)
U5(f46_out1(z0), z1, z2) → f45_out1(z0)
U5(z0, f47_out1(z1, z2), z3) → f45_out2(z1, z2)
f77_in(z0) → U6(f46_in(z0), f79_in(z0), z0)
U6(f46_out1(z0), z1, z2) → f77_out1(z0)
U6(z0, f79_out1(z1, z2), z3) → f77_out2(z1, z2)
Tuples:

F1_IN(z0, z1) → c1(F7_IN(z0, z1))
F7_IN(s(z0), 0) → c1(F45_IN(z0))
F45_IN(z0) → c1(F46_IN(z0))
F7_IN(s(z0), s(z1)) → c6(F7_IN(z0, z1))
F46_IN(s(z0)) → c12(F77_IN(z0))
F77_IN(z0) → c18(F46_IN(z0))
F1_IN(z0, z1) → c1
F7_IN(s(z0), 0) → c1
F45_IN(z0) → c1
S tuples:

F1_IN(z0, z1) → c1(F7_IN(z0, z1))
F7_IN(s(z0), 0) → c1(F45_IN(z0))
F45_IN(z0) → c1(F46_IN(z0))
F7_IN(s(z0), s(z1)) → c6(F7_IN(z0, z1))
F46_IN(s(z0)) → c12(F77_IN(z0))
F77_IN(z0) → c18(F46_IN(z0))
F1_IN(z0, z1) → c1
F7_IN(s(z0), 0) → c1
F45_IN(z0) → c1
K tuples:none
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f46_in, U4, f45_in, U5, f77_in, U6

Defined Pair Symbols:

F1_IN, F7_IN, F45_IN, F46_IN, F77_IN

Compound Symbols:

c1, c6, c12, c18, c1

(7) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F1_IN(z0, z1) → c1(F7_IN(z0, z1))
F1_IN(z0, z1) → c1

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f7_in(z0, z1), z0, z1)
U1(f7_out1(z0), z1, z2) → f1_out1
f7_in(z0, 0) → f7_out1(z0)
f7_in(0, 0) → f7_out1(0)
f7_in(s(z0), 0) → U2(f45_in(z0), s(z0), 0)
f7_in(0, z0) → f7_out1(0)
f7_in(s(z0), s(z1)) → U3(f7_in(z0, z1), s(z0), s(z1))
U2(f45_out1(z0), s(z1), 0) → f7_out1(z0)
U2(f45_out2(z0, z1), s(z2), 0) → f7_out1(z1)
U3(f7_out1(z0), s(z1), s(z2)) → f7_out1(z0)
f46_in(z0) → f46_out1(z0)
f46_in(0) → f46_out1(0)
f46_in(s(z0)) → U4(f77_in(z0), s(z0))
U4(f77_out1(z0), s(z1)) → f46_out1(z0)
U4(f77_out2(z0, z1), s(z2)) → f46_out1(z1)
f45_in(z0) → U5(f46_in(z0), f47_in(z0), z0)
U5(f46_out1(z0), z1, z2) → f45_out1(z0)
U5(z0, f47_out1(z1, z2), z3) → f45_out2(z1, z2)
f77_in(z0) → U6(f46_in(z0), f79_in(z0), z0)
U6(f46_out1(z0), z1, z2) → f77_out1(z0)
U6(z0, f79_out1(z1, z2), z3) → f77_out2(z1, z2)
Tuples:

F1_IN(z0, z1) → c1(F7_IN(z0, z1))
F7_IN(s(z0), 0) → c1(F45_IN(z0))
F45_IN(z0) → c1(F46_IN(z0))
F7_IN(s(z0), s(z1)) → c6(F7_IN(z0, z1))
F46_IN(s(z0)) → c12(F77_IN(z0))
F77_IN(z0) → c18(F46_IN(z0))
F1_IN(z0, z1) → c1
F7_IN(s(z0), 0) → c1
F45_IN(z0) → c1
S tuples:

F7_IN(s(z0), 0) → c1(F45_IN(z0))
F45_IN(z0) → c1(F46_IN(z0))
F7_IN(s(z0), s(z1)) → c6(F7_IN(z0, z1))
F46_IN(s(z0)) → c12(F77_IN(z0))
F77_IN(z0) → c18(F46_IN(z0))
F7_IN(s(z0), 0) → c1
F45_IN(z0) → c1
K tuples:

F1_IN(z0, z1) → c1(F7_IN(z0, z1))
F1_IN(z0, z1) → c1
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f46_in, U4, f45_in, U5, f77_in, U6

Defined Pair Symbols:

F1_IN, F7_IN, F45_IN, F46_IN, F77_IN

Compound Symbols:

c1, c6, c12, c18, c1

(9) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F7_IN(s(z0), 0) → c1(F45_IN(z0))
F45_IN(z0) → c1(F46_IN(z0))
F7_IN(s(z0), 0) → c1
F45_IN(z0) → c1
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(z0, z1) → c1(F7_IN(z0, z1))
F7_IN(s(z0), 0) → c1(F45_IN(z0))
F45_IN(z0) → c1(F46_IN(z0))
F7_IN(s(z0), s(z1)) → c6(F7_IN(z0, z1))
F46_IN(s(z0)) → c12(F77_IN(z0))
F77_IN(z0) → c18(F46_IN(z0))
F1_IN(z0, z1) → c1
F7_IN(s(z0), 0) → c1
F45_IN(z0) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [3]   
POL(F1_IN(x1, x2)) = [1] + [3]x1 + [2]x2   
POL(F45_IN(x1)) = [3] + [3]x1   
POL(F46_IN(x1)) = [1]   
POL(F77_IN(x1)) = [1]   
POL(F7_IN(x1, x2)) = [1] + [3]x1 + x2   
POL(c1) = 0   
POL(c1(x1)) = x1   
POL(c12(x1)) = x1   
POL(c18(x1)) = x1   
POL(c6(x1)) = x1   
POL(s(x1)) = x1   

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f7_in(z0, z1), z0, z1)
U1(f7_out1(z0), z1, z2) → f1_out1
f7_in(z0, 0) → f7_out1(z0)
f7_in(0, 0) → f7_out1(0)
f7_in(s(z0), 0) → U2(f45_in(z0), s(z0), 0)
f7_in(0, z0) → f7_out1(0)
f7_in(s(z0), s(z1)) → U3(f7_in(z0, z1), s(z0), s(z1))
U2(f45_out1(z0), s(z1), 0) → f7_out1(z0)
U2(f45_out2(z0, z1), s(z2), 0) → f7_out1(z1)
U3(f7_out1(z0), s(z1), s(z2)) → f7_out1(z0)
f46_in(z0) → f46_out1(z0)
f46_in(0) → f46_out1(0)
f46_in(s(z0)) → U4(f77_in(z0), s(z0))
U4(f77_out1(z0), s(z1)) → f46_out1(z0)
U4(f77_out2(z0, z1), s(z2)) → f46_out1(z1)
f45_in(z0) → U5(f46_in(z0), f47_in(z0), z0)
U5(f46_out1(z0), z1, z2) → f45_out1(z0)
U5(z0, f47_out1(z1, z2), z3) → f45_out2(z1, z2)
f77_in(z0) → U6(f46_in(z0), f79_in(z0), z0)
U6(f46_out1(z0), z1, z2) → f77_out1(z0)
U6(z0, f79_out1(z1, z2), z3) → f77_out2(z1, z2)
Tuples:

F1_IN(z0, z1) → c1(F7_IN(z0, z1))
F7_IN(s(z0), 0) → c1(F45_IN(z0))
F45_IN(z0) → c1(F46_IN(z0))
F7_IN(s(z0), s(z1)) → c6(F7_IN(z0, z1))
F46_IN(s(z0)) → c12(F77_IN(z0))
F77_IN(z0) → c18(F46_IN(z0))
F1_IN(z0, z1) → c1
F7_IN(s(z0), 0) → c1
F45_IN(z0) → c1
S tuples:

F7_IN(s(z0), s(z1)) → c6(F7_IN(z0, z1))
F46_IN(s(z0)) → c12(F77_IN(z0))
F77_IN(z0) → c18(F46_IN(z0))
K tuples:

F1_IN(z0, z1) → c1(F7_IN(z0, z1))
F1_IN(z0, z1) → c1
F7_IN(s(z0), 0) → c1(F45_IN(z0))
F45_IN(z0) → c1(F46_IN(z0))
F7_IN(s(z0), 0) → c1
F45_IN(z0) → c1
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f46_in, U4, f45_in, U5, f77_in, U6

Defined Pair Symbols:

F1_IN, F7_IN, F45_IN, F46_IN, F77_IN

Compound Symbols:

c1, c6, c12, c18, c1

(11) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F7_IN(s(z0), s(z1)) → c6(F7_IN(z0, z1))
F46_IN(s(z0)) → c12(F77_IN(z0))
F77_IN(z0) → c18(F46_IN(z0))
We considered the (Usable) Rules:none
And the Tuples:

F1_IN(z0, z1) → c1(F7_IN(z0, z1))
F7_IN(s(z0), 0) → c1(F45_IN(z0))
F45_IN(z0) → c1(F46_IN(z0))
F7_IN(s(z0), s(z1)) → c6(F7_IN(z0, z1))
F46_IN(s(z0)) → c12(F77_IN(z0))
F77_IN(z0) → c18(F46_IN(z0))
F1_IN(z0, z1) → c1
F7_IN(s(z0), 0) → c1
F45_IN(z0) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(F1_IN(x1, x2)) = [2] + [3]x1   
POL(F45_IN(x1)) = [3] + [3]x1   
POL(F46_IN(x1)) = [3]x1   
POL(F77_IN(x1)) = [1] + [3]x1   
POL(F7_IN(x1, x2)) = [2] + [3]x1   
POL(c1) = 0   
POL(c1(x1)) = x1   
POL(c12(x1)) = x1   
POL(c18(x1)) = x1   
POL(c6(x1)) = x1   
POL(s(x1)) = [2] + x1   

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

f1_in(z0, z1) → U1(f7_in(z0, z1), z0, z1)
U1(f7_out1(z0), z1, z2) → f1_out1
f7_in(z0, 0) → f7_out1(z0)
f7_in(0, 0) → f7_out1(0)
f7_in(s(z0), 0) → U2(f45_in(z0), s(z0), 0)
f7_in(0, z0) → f7_out1(0)
f7_in(s(z0), s(z1)) → U3(f7_in(z0, z1), s(z0), s(z1))
U2(f45_out1(z0), s(z1), 0) → f7_out1(z0)
U2(f45_out2(z0, z1), s(z2), 0) → f7_out1(z1)
U3(f7_out1(z0), s(z1), s(z2)) → f7_out1(z0)
f46_in(z0) → f46_out1(z0)
f46_in(0) → f46_out1(0)
f46_in(s(z0)) → U4(f77_in(z0), s(z0))
U4(f77_out1(z0), s(z1)) → f46_out1(z0)
U4(f77_out2(z0, z1), s(z2)) → f46_out1(z1)
f45_in(z0) → U5(f46_in(z0), f47_in(z0), z0)
U5(f46_out1(z0), z1, z2) → f45_out1(z0)
U5(z0, f47_out1(z1, z2), z3) → f45_out2(z1, z2)
f77_in(z0) → U6(f46_in(z0), f79_in(z0), z0)
U6(f46_out1(z0), z1, z2) → f77_out1(z0)
U6(z0, f79_out1(z1, z2), z3) → f77_out2(z1, z2)
Tuples:

F1_IN(z0, z1) → c1(F7_IN(z0, z1))
F7_IN(s(z0), 0) → c1(F45_IN(z0))
F45_IN(z0) → c1(F46_IN(z0))
F7_IN(s(z0), s(z1)) → c6(F7_IN(z0, z1))
F46_IN(s(z0)) → c12(F77_IN(z0))
F77_IN(z0) → c18(F46_IN(z0))
F1_IN(z0, z1) → c1
F7_IN(s(z0), 0) → c1
F45_IN(z0) → c1
S tuples:none
K tuples:

F1_IN(z0, z1) → c1(F7_IN(z0, z1))
F1_IN(z0, z1) → c1
F7_IN(s(z0), 0) → c1(F45_IN(z0))
F45_IN(z0) → c1(F46_IN(z0))
F7_IN(s(z0), 0) → c1
F45_IN(z0) → c1
F7_IN(s(z0), s(z1)) → c6(F7_IN(z0, z1))
F46_IN(s(z0)) → c12(F77_IN(z0))
F77_IN(z0) → c18(F46_IN(z0))
Defined Rule Symbols:

f1_in, U1, f7_in, U2, U3, f46_in, U4, f45_in, U5, f77_in, U6

Defined Pair Symbols:

F1_IN, F7_IN, F45_IN, F46_IN, F77_IN

Compound Symbols:

c1, c6, c12, c18, c1

(13) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(14) BOUNDS(O(1), O(1))

(15) PrologToCdtProblemTransformerProof (UPPER BOUND (ID) transformation)

Built complexity over-approximating cdt problems from derivation graph.

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1(z0), z1, z2) → f2_out1
f5_in(z0, 0) → f5_out1(z0)
f5_in(0, 0) → f5_out1(0)
f5_in(s(z0), 0) → U2(f30_in(z0), s(z0), 0)
f5_in(0, z0) → f5_out1(0)
f5_in(s(z0), s(z1)) → U3(f5_in(z0, z1), s(z0), s(z1))
U2(f30_out1(z0), s(z1), 0) → f5_out1(z0)
U2(f30_out2(z0, z1), s(z2), 0) → f5_out1(z1)
U3(f5_out1(z0), s(z1), s(z2)) → f5_out1(z0)
f32_in(z0) → f32_out1(z0)
f32_in(0) → f32_out1(0)
f32_in(s(z0)) → U4(f55_in(z0), s(z0))
U4(f55_out1(z0), s(z1)) → f32_out1(z0)
U4(f55_out2(z0, z1), s(z2)) → f32_out1(z1)
f30_in(z0) → U5(f32_in(z0), f33_in(z0), z0)
U5(f32_out1(z0), z1, z2) → f30_out1(z0)
U5(z0, f33_out1(z1, z2), z3) → f30_out2(z1, z2)
f55_in(z0) → U6(f32_in(z0), f59_in(z0), z0)
U6(f32_out1(z0), z1, z2) → f55_out1(z0)
U6(z0, f59_out1(z1, z2), z3) → f55_out2(z1, z2)
Tuples:

F2_IN(z0, z1) → c(U1'(f5_in(z0, z1), z0, z1), F5_IN(z0, z1))
F5_IN(s(z0), 0) → c4(U2'(f30_in(z0), s(z0), 0), F30_IN(z0))
F5_IN(s(z0), s(z1)) → c6(U3'(f5_in(z0, z1), s(z0), s(z1)), F5_IN(z0, z1))
F32_IN(s(z0)) → c12(U4'(f55_in(z0), s(z0)), F55_IN(z0))
F30_IN(z0) → c15(U5'(f32_in(z0), f33_in(z0), z0), F32_IN(z0))
F55_IN(z0) → c18(U6'(f32_in(z0), f59_in(z0), z0), F32_IN(z0))
S tuples:

F2_IN(z0, z1) → c(U1'(f5_in(z0, z1), z0, z1), F5_IN(z0, z1))
F5_IN(s(z0), 0) → c4(U2'(f30_in(z0), s(z0), 0), F30_IN(z0))
F5_IN(s(z0), s(z1)) → c6(U3'(f5_in(z0, z1), s(z0), s(z1)), F5_IN(z0, z1))
F32_IN(s(z0)) → c12(U4'(f55_in(z0), s(z0)), F55_IN(z0))
F30_IN(z0) → c15(U5'(f32_in(z0), f33_in(z0), z0), F32_IN(z0))
F55_IN(z0) → c18(U6'(f32_in(z0), f59_in(z0), z0), F32_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f5_in, U2, U3, f32_in, U4, f30_in, U5, f55_in, U6

Defined Pair Symbols:

F2_IN, F5_IN, F32_IN, F30_IN, F55_IN

Compound Symbols:

c, c4, c6, c12, c15, c18

(17) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)

Split RHS of tuples not part of any SCC

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1(z0), z1, z2) → f2_out1
f5_in(z0, 0) → f5_out1(z0)
f5_in(0, 0) → f5_out1(0)
f5_in(s(z0), 0) → U2(f30_in(z0), s(z0), 0)
f5_in(0, z0) → f5_out1(0)
f5_in(s(z0), s(z1)) → U3(f5_in(z0, z1), s(z0), s(z1))
U2(f30_out1(z0), s(z1), 0) → f5_out1(z0)
U2(f30_out2(z0, z1), s(z2), 0) → f5_out1(z1)
U3(f5_out1(z0), s(z1), s(z2)) → f5_out1(z0)
f32_in(z0) → f32_out1(z0)
f32_in(0) → f32_out1(0)
f32_in(s(z0)) → U4(f55_in(z0), s(z0))
U4(f55_out1(z0), s(z1)) → f32_out1(z0)
U4(f55_out2(z0, z1), s(z2)) → f32_out1(z1)
f30_in(z0) → U5(f32_in(z0), f33_in(z0), z0)
U5(f32_out1(z0), z1, z2) → f30_out1(z0)
U5(z0, f33_out1(z1, z2), z3) → f30_out2(z1, z2)
f55_in(z0) → U6(f32_in(z0), f59_in(z0), z0)
U6(f32_out1(z0), z1, z2) → f55_out1(z0)
U6(z0, f59_out1(z1, z2), z3) → f55_out2(z1, z2)
Tuples:

F5_IN(s(z0), s(z1)) → c6(U3'(f5_in(z0, z1), s(z0), s(z1)), F5_IN(z0, z1))
F32_IN(s(z0)) → c12(U4'(f55_in(z0), s(z0)), F55_IN(z0))
F55_IN(z0) → c18(U6'(f32_in(z0), f59_in(z0), z0), F32_IN(z0))
F2_IN(z0, z1) → c1(U1'(f5_in(z0, z1), z0, z1))
F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(s(z0), 0) → c1(U2'(f30_in(z0), s(z0), 0))
F5_IN(s(z0), 0) → c1(F30_IN(z0))
F30_IN(z0) → c1(U5'(f32_in(z0), f33_in(z0), z0))
F30_IN(z0) → c1(F32_IN(z0))
S tuples:

F5_IN(s(z0), s(z1)) → c6(U3'(f5_in(z0, z1), s(z0), s(z1)), F5_IN(z0, z1))
F32_IN(s(z0)) → c12(U4'(f55_in(z0), s(z0)), F55_IN(z0))
F55_IN(z0) → c18(U6'(f32_in(z0), f59_in(z0), z0), F32_IN(z0))
F2_IN(z0, z1) → c1(U1'(f5_in(z0, z1), z0, z1))
F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(s(z0), 0) → c1(U2'(f30_in(z0), s(z0), 0))
F5_IN(s(z0), 0) → c1(F30_IN(z0))
F30_IN(z0) → c1(U5'(f32_in(z0), f33_in(z0), z0))
F30_IN(z0) → c1(F32_IN(z0))
K tuples:none
Defined Rule Symbols:

f2_in, U1, f5_in, U2, U3, f32_in, U4, f30_in, U5, f55_in, U6

Defined Pair Symbols:

F5_IN, F32_IN, F55_IN, F2_IN, F30_IN

Compound Symbols:

c6, c12, c18, c1

(19) CdtGraphRemoveTrailingTuplepartsProof (BOTH BOUNDS(ID, ID) transformation)

Removed 6 trailing tuple parts

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1(z0), z1, z2) → f2_out1
f5_in(z0, 0) → f5_out1(z0)
f5_in(0, 0) → f5_out1(0)
f5_in(s(z0), 0) → U2(f30_in(z0), s(z0), 0)
f5_in(0, z0) → f5_out1(0)
f5_in(s(z0), s(z1)) → U3(f5_in(z0, z1), s(z0), s(z1))
U2(f30_out1(z0), s(z1), 0) → f5_out1(z0)
U2(f30_out2(z0, z1), s(z2), 0) → f5_out1(z1)
U3(f5_out1(z0), s(z1), s(z2)) → f5_out1(z0)
f32_in(z0) → f32_out1(z0)
f32_in(0) → f32_out1(0)
f32_in(s(z0)) → U4(f55_in(z0), s(z0))
U4(f55_out1(z0), s(z1)) → f32_out1(z0)
U4(f55_out2(z0, z1), s(z2)) → f32_out1(z1)
f30_in(z0) → U5(f32_in(z0), f33_in(z0), z0)
U5(f32_out1(z0), z1, z2) → f30_out1(z0)
U5(z0, f33_out1(z1, z2), z3) → f30_out2(z1, z2)
f55_in(z0) → U6(f32_in(z0), f59_in(z0), z0)
U6(f32_out1(z0), z1, z2) → f55_out1(z0)
U6(z0, f59_out1(z1, z2), z3) → f55_out2(z1, z2)
Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(s(z0), 0) → c1(F30_IN(z0))
F30_IN(z0) → c1(F32_IN(z0))
F5_IN(s(z0), s(z1)) → c6(F5_IN(z0, z1))
F32_IN(s(z0)) → c12(F55_IN(z0))
F55_IN(z0) → c18(F32_IN(z0))
F2_IN(z0, z1) → c1
F5_IN(s(z0), 0) → c1
F30_IN(z0) → c1
S tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(s(z0), 0) → c1(F30_IN(z0))
F30_IN(z0) → c1(F32_IN(z0))
F5_IN(s(z0), s(z1)) → c6(F5_IN(z0, z1))
F32_IN(s(z0)) → c12(F55_IN(z0))
F55_IN(z0) → c18(F32_IN(z0))
F2_IN(z0, z1) → c1
F5_IN(s(z0), 0) → c1
F30_IN(z0) → c1
K tuples:none
Defined Rule Symbols:

f2_in, U1, f5_in, U2, U3, f32_in, U4, f30_in, U5, f55_in, U6

Defined Pair Symbols:

F2_IN, F5_IN, F30_IN, F32_IN, F55_IN

Compound Symbols:

c1, c6, c12, c18, c1

(21) CdtKnowledgeProof (EQUIVALENT transformation)

The following tuples could be moved from S to K by knowledge propagation:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F2_IN(z0, z1) → c1

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1(z0), z1, z2) → f2_out1
f5_in(z0, 0) → f5_out1(z0)
f5_in(0, 0) → f5_out1(0)
f5_in(s(z0), 0) → U2(f30_in(z0), s(z0), 0)
f5_in(0, z0) → f5_out1(0)
f5_in(s(z0), s(z1)) → U3(f5_in(z0, z1), s(z0), s(z1))
U2(f30_out1(z0), s(z1), 0) → f5_out1(z0)
U2(f30_out2(z0, z1), s(z2), 0) → f5_out1(z1)
U3(f5_out1(z0), s(z1), s(z2)) → f5_out1(z0)
f32_in(z0) → f32_out1(z0)
f32_in(0) → f32_out1(0)
f32_in(s(z0)) → U4(f55_in(z0), s(z0))
U4(f55_out1(z0), s(z1)) → f32_out1(z0)
U4(f55_out2(z0, z1), s(z2)) → f32_out1(z1)
f30_in(z0) → U5(f32_in(z0), f33_in(z0), z0)
U5(f32_out1(z0), z1, z2) → f30_out1(z0)
U5(z0, f33_out1(z1, z2), z3) → f30_out2(z1, z2)
f55_in(z0) → U6(f32_in(z0), f59_in(z0), z0)
U6(f32_out1(z0), z1, z2) → f55_out1(z0)
U6(z0, f59_out1(z1, z2), z3) → f55_out2(z1, z2)
Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(s(z0), 0) → c1(F30_IN(z0))
F30_IN(z0) → c1(F32_IN(z0))
F5_IN(s(z0), s(z1)) → c6(F5_IN(z0, z1))
F32_IN(s(z0)) → c12(F55_IN(z0))
F55_IN(z0) → c18(F32_IN(z0))
F2_IN(z0, z1) → c1
F5_IN(s(z0), 0) → c1
F30_IN(z0) → c1
S tuples:

F5_IN(s(z0), 0) → c1(F30_IN(z0))
F30_IN(z0) → c1(F32_IN(z0))
F5_IN(s(z0), s(z1)) → c6(F5_IN(z0, z1))
F32_IN(s(z0)) → c12(F55_IN(z0))
F55_IN(z0) → c18(F32_IN(z0))
F5_IN(s(z0), 0) → c1
F30_IN(z0) → c1
K tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F2_IN(z0, z1) → c1
Defined Rule Symbols:

f2_in, U1, f5_in, U2, U3, f32_in, U4, f30_in, U5, f55_in, U6

Defined Pair Symbols:

F2_IN, F5_IN, F30_IN, F32_IN, F55_IN

Compound Symbols:

c1, c6, c12, c18, c1

(23) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

F5_IN(s(z0), 0) → c1(F30_IN(z0))
F30_IN(z0) → c1(F32_IN(z0))
F5_IN(s(z0), 0) → c1
F30_IN(z0) → c1
We considered the (Usable) Rules:none
And the Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(s(z0), 0) → c1(F30_IN(z0))
F30_IN(z0) → c1(F32_IN(z0))
F5_IN(s(z0), s(z1)) → c6(F5_IN(z0, z1))
F32_IN(s(z0)) → c12(F55_IN(z0))
F55_IN(z0) → c18(F32_IN(z0))
F2_IN(z0, z1) → c1
F5_IN(s(z0), 0) → c1
F30_IN(z0) → c1
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = [3]   
POL(F2_IN(x1, x2)) = [1] + [3]x1 + [2]x2   
POL(F30_IN(x1)) = [3] + [3]x1   
POL(F32_IN(x1)) = [1]   
POL(F55_IN(x1)) = [1]   
POL(F5_IN(x1, x2)) = [1] + [3]x1 + x2   
POL(c1) = 0   
POL(c1(x1)) = x1   
POL(c12(x1)) = x1   
POL(c18(x1)) = x1   
POL(c6(x1)) = x1   
POL(s(x1)) = x1   

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

f2_in(z0, z1) → U1(f5_in(z0, z1), z0, z1)
U1(f5_out1(z0), z1, z2) → f2_out1
f5_in(z0, 0) → f5_out1(z0)
f5_in(0, 0) → f5_out1(0)
f5_in(s(z0), 0) → U2(f30_in(z0), s(z0), 0)
f5_in(0, z0) → f5_out1(0)
f5_in(s(z0), s(z1)) → U3(f5_in(z0, z1), s(z0), s(z1))
U2(f30_out1(z0), s(z1), 0) → f5_out1(z0)
U2(f30_out2(z0, z1), s(z2), 0) → f5_out1(z1)
U3(f5_out1(z0), s(z1), s(z2)) → f5_out1(z0)
f32_in(z0) → f32_out1(z0)
f32_in(0) → f32_out1(0)
f32_in(s(z0)) → U4(f55_in(z0), s(z0))
U4(f55_out1(z0), s(z1)) → f32_out1(z0)
U4(f55_out2(z0, z1), s(z2)) → f32_out1(z1)
f30_in(z0) → U5(f32_in(z0), f33_in(z0), z0)
U5(f32_out1(z0), z1, z2) → f30_out1(z0)
U5(z0, f33_out1(z1, z2), z3) → f30_out2(z1, z2)
f55_in(z0) → U6(f32_in(z0), f59_in(z0), z0)
U6(f32_out1(z0), z1, z2) → f55_out1(z0)
U6(z0, f59_out1(z1, z2), z3) → f55_out2(z1, z2)
Tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F5_IN(s(z0), 0) → c1(F30_IN(z0))
F30_IN(z0) → c1(F32_IN(z0))
F5_IN(s(z0), s(z1)) → c6(F5_IN(z0, z1))
F32_IN(s(z0)) → c12(F55_IN(z0))
F55_IN(z0) → c18(F32_IN(z0))
F2_IN(z0, z1) → c1
F5_IN(s(z0), 0) → c1
F30_IN(z0) → c1
S tuples:

F5_IN(s(z0), s(z1)) → c6(F5_IN(z0, z1))
F32_IN(s(z0)) → c12(F55_IN(z0))
F55_IN(z0) → c18(F32_IN(z0))
K tuples:

F2_IN(z0, z1) → c1(F5_IN(z0, z1))
F2_IN(z0, z1) → c1
F5_IN(s(z0), 0) → c1(F30_IN(z0))
F30_IN(z0) → c1(F32_IN(z0))
F5_IN(s(z0), 0) → c1
F30_IN(z0) → c1
Defined Rule Symbols:

f2_in, U1, f5_in, U2, U3, f32_in, U4, f30_in, U5, f55_in, U6

Defined Pair Symbols:

F2_IN, F5_IN, F30_IN, F32_IN, F55_IN

Compound Symbols:

c1, c6, c12, c18, c1